Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz
Answer:
If she stands on the North side of a river flowing to the East at 5 mph,
she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have
x^2 + 5^2 = 10^2 where x is her speed directly across the river
x = (75)^1/2 = 8.66 mph towards the South
sin theta = 5 / 10 = 1/2
She must angle the boat at 30 deg from straight South
The X and Y components of the force are 90.63 Newton and 42.26 Newton respectively.
<u>Given the following data:</u>
- Angle of inclination = 25°
To determine the X and Y components of the force:
<h3>The horizontal component (X) of a force:</h3>
Mathematically, the horizontal component of a force is given by this formula:

Fx = 90.63 Newton.
<h3>The vertical component (Y) of tensional force:</h3>
Mathematically, the vertical component of a force is given by this formula:

Fy = 42.26 Newton.
Read more on horizontal component here: brainly.com/question/4080400
I think 100 mph pushing the car the opposite direction
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.