Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
I’m pretty sure it’s Nose
Answer:

Explanation:
The pressure at the bottom of the tank is:


The force exerted on the circular bottom is:
![F=(73581.921\,Pa)\cdot (\frac{\pi}{4} )\cdot [(12\,ft)\cdot (\frac{0.305\,m}{1\,ft} )]^{2}](https://tex.z-dn.net/?f=F%3D%2873581.921%5C%2CPa%29%5Ccdot%20%28%5Cfrac%7B%5Cpi%7D%7B4%7D%20%29%5Ccdot%20%5B%2812%5C%2Cft%29%5Ccdot%20%28%5Cfrac%7B0.305%5C%2Cm%7D%7B1%5C%2Cft%7D%20%29%5D%5E%7B2%7D)
