1128 is the momentum for this. i think
The formation of chemical bonds occurs due to the attractive forces between oppositely charged ions (ionic bonds) or by sharing of electrons (covalent bonds).
An atom having tendency of attracting a shared pair of electrons towards itself and this chemical property is said to Electronegativity .
Thus, the attractive forces which draws in surrounding electrons for chemical bonds is electronegativity.
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
False because that doesn’t make sense
Answer:
-105 kJ
Explanation:
The enthalpy change of a reaction is the sum of the energy of the bonds of the reactants and the products. The bonds at the reactants are being broken, so it's an endothermic reaction, so the bond energy must be positive.
The bonds at the products are being formed, so the process is exothermic, and the bond energy must be negative. There are being broken 1 N≡N bond and 3 H-H bonds, and are being formed 6 N-H bonds:
Reactants: 945 + 3*432 = 2241 kJ
Products: 6*(-391) = -2346 kJ
ΔH = 2241 - 2346
ΔH = -105 kJ