Answer:
The rate law for second order unimolecular irreversible reaction is
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Explanation:
A second order unimolecular irreversible reaction is
2A → B
Thus the rate of the reaction is
![v = -\frac{1}{2}.\frac{d[A]}{dt} = k.[A]^{2}](https://tex.z-dn.net/?f=v%20%3D%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D%20k.%5BA%5D%5E%7B2%7D)
rearranging the ecuation
![-\frac{1}{2}.\frac{k}{dt} = \frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Integrating between times 0 to <em>t </em>and between the concentrations of
to <em>[A].</em>
![\int\limits^0_t -\frac{1}{2}.\frac{k}{dt} =\int\limits^A_{0} _A\frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E0_t%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%5Cint%5Climits%5EA_%7B0%7D%20_A%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Solving the integral
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Answer: 143.3
137+115+104+263+98 divided by 5.Which gives us 143.3
Answer:Two more hydrogen atoms will be required
Explanation:
A carbon atom has 4 valence electrons in its outermost shell,thus it can form 4 covalent bonds.Two pairs of electrons are shared in a double bond between C-C atom.two more electrons are left which is shared with two hydrogen atoms.
This means that there are 7 protons in the nucleus of a nitrogen atom.
Answer:
3 bonds are needed.
Explanation:
The electrons that are involved in chemical bonding are those in the outer shell of the highest energy level of the atom. The electron configuration of nitrogen (N) is 1s²2s²2p³. That means thy at each nitrogen atom has 5 valence electrons: 2 electrons in the 2s orbital and 3 electrons in the 2p orbital. To fullfil the octet, each nitrogen atom needs 3 electrons. So, they can share each other 3 electrons to form 3 simple bonds. Therefore, the nitrogen molecule (N₂) has 3 bonds involving 6 bonding electrons or a triple bond.