Answer: The answer is 314.28 cm² (approx.).
Step-by-step explanation: Given that an engineer is going to install a new water pipe. The diameter of this circular pipe is, d = 20 cm.
We need to find the area 'A' of the circular cross-section of the pipe.
Given, diameter of the circular section is

So, the radius of the circular cross-section will be

Therefore, cross-sectional area of the pipe is

Thus, the answer is 314.28 cm² (approx.).
Answer:
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
Step-by-step explanation:
Given:
Volume of inside of the sphere is given as

where r is the radius of the sphere
To Find:
r =?
Solution:
We have
......Given
![3\times V=4\pi r^{3} \\\\\therefore r^{3}=\frac{3V}{4\pi } \\\\\therefore r=\sqrt[3]{\frac{3V}{4\pi }} \textrm{which is the expression for r}](https://tex.z-dn.net/?f=3%5Ctimes%20V%3D4%5Cpi%20r%5E%7B3%7D%20%5C%5C%5C%5C%5Ctherefore%20r%5E%7B3%7D%3D%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%20%5C%5C%5C%5C%5Ctherefore%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D%20%5Ctextrm%7Bwhich%20is%20the%20expression%20for%20r%7D)
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
Answer:
65 cents
Step-by-step explanation:
divide 10 by 2.25 to get the factor. Next divide 2.9 by that to get your answer. 10/2.25 = 4 4/9. 2.9/ 4 4/9 = 0.6525 --> 0.65
I can help with the formula just do the math on a calculator you multiply length x width x height
Answer: a^3+81ab^2
First, you square (a+9b) which will become (a^2+81b^2)
Then, you multiply it by a and you will get a^3+81ab^2