1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
5

Translate the sentence into an equation. Four times the difference of a number and 5 is 24.

Mathematics
1 answer:
givi [52]3 years ago
3 0
4\ times\to4\times\\difference\ of\ a\ number\ "c"\ and\ 5\to c-5\\is\ equal\ 24\to=24\\\\4\times(c-5)=24\\\\Answer:\boxed{a.}
You might be interested in
How many true solutions does the equation sinx=cosx-1 have over the interval 0 is less than or equal to x which is less than or
FrozenT [24]
sinx=cosx-1 \\  \\ 
sinx-cosx=-1

Using the identity: sinx-cosx=- \sqrt{2}cos( \frac{ \pi }{4}+x), we get:

- \sqrt{2}cos( \frac{ \pi }{4}+x)=-1 \\  \\ 
cos( \frac{ \pi }{4}+x)= \frac{1}{ \sqrt{2} } \\  \\ 


There are two solutions to this equation:

1)
\frac{ \pi }{4}+x= \frac{ \pi }{4} \\  \\ 
x=0

Since the period of cosine is 2π, so 0 + 2π = 2π will also be a solution to the given equation

2) 
\frac{ \pi }{4}+x= \frac{7 \pi }{4}   \\  \\ 
x= \frac{3 \pi }{2}

Therefore, there are 3 solutions to the given trigonometric equation.
7 0
3 years ago
Read 2 more answers
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Can someone please help me???????????????????
Vinil7 [7]

Answer:

C

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
-x-2y-4z=-6<br> X-5y-2z=-2<br> 2x-3y+2z=2
Svetlanka [38]

Answer:

\sqrt{2} or (1/2)

Step-by-step explanation:

7 0
3 years ago
3 ft<br>3 ft<br>O What is the surface area of the 3-dimensio<br>shape?
Elanso [62]
The answer may be c but if not i am super sorry!!
4 0
2 years ago
Other questions:
  • What is the describes the number 5? Write prime composite neither prime nor composite or both prime and composite
    11·2 answers
  • If $15 % of $375,how much is 5%
    12·1 answer
  • Find the arc length of a central angle of pi/4 in a circle whose radius is 8 inches
    8·2 answers
  • Please helpp with this!!
    8·1 answer
  • A skyscraper is 1,150 feet above ground level. It extends 35 feet below ground level. What is the total length of the skyscraper
    12·1 answer
  • What is the value of b?
    9·1 answer
  • Whats the answer.......................
    9·1 answer
  • What is the only trigonometry function that can have a fraction greater than one and why
    15·1 answer
  • PLEASE HELP I NEED IT TO PASS THIS CLASS
    11·2 answers
  • Please and Thank you!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!