Answer:
a) On average, homes that are on busy streets are worth $3600 less than homes that are not on busy streets.
Step-by-step explanation:
For the same home (x1 is the same), x2 = 1 if it is on a busy street and x2 = 0 if it is not on a busy street. If x2 = 1, the value of 't' decreases by 3.6 when compared to the value of 't' for x2=0. Since 't' is given in thousands of dollars, when a home is on a busy street, its value decreases by 3.6 thousand dollars.

Therefore, the answer is a) On average, homes that are on busy streets are worth $3600 less than homes that are not on busy streets.
The answer is f
jowokandnrjeosozmd gnal
Answer:
The domain of the function is R i.e. any real value.
Step-by-step explanation:
The given figure is a graph on the coordinate plane of the function
Now, the domain of a function means that the values of x (Independent variable) for which the function is valid i.e. the y values are real.
It is clear from the equation given above that for any real value of x there will be a real corresponding value of y.
Therefore, the domain of the function is R i.e. any real value. (Answer)
Answer:
a). 0.294
b) 0.11
Step-by-step explanation:
From the given information:
the probability of the low risk = 0.60
the probability of the high risk = 0.40
let
represent no claim
let
represent 1 claim
let
represent 2 claim :
For low risk;
so,
= (0.80 * 0.60 = 0.48),
= (0.15* 0.60=0.09),
= (0.05 * 0.60=0.03)
For high risk:
= (0.50 * 0.40 = 0.2),
= (0.30 * 0.40 = 0.12) ,
= ( 0.20 * 0.40 = 0.08)
Therefore:
a), the probability that a randomly selected policyholder is high-risk and filed no claims can be computed as:




b) What is the probability that a randomly selected policyholder filed two claims?
the probability that a randomly selected policyholder be filled with two claims = 0.03 + 0.08
= 0.11