Iuyhnbvfcrtgbhnjlkbvcxdfvghbnjk
The questions that are 1-6 above:
Use the term
P- Parenthesis
E- Exponents
M-Multiplying
D-Dividing
A- Addition
S-Subtraction
Do the equations from that order doing Parenthesis first, Exponents second, etc.
If there's none of one of the operations, skip to the next one. Remember to solve the equation starting from parenthesis and then going down the order.
Sorry I can't help you with the bottom 1-6 Good luck
Answer:
a. 0.76
b. 0.23
c. 0.5
d. p(B/A) is the probability that given that a student has a visa card, they also have a master card
p(A/B) is the probability that given a student has a master card, they also have a visa card
e. 0.35
f. 0.31
Step-by-step explanation:
a. p(AUBUC)= P(A)+P(B)+P(C)-P(AnB)-P(AnC)-P(BnC)+P(AnBnC)
=0.6+0.4+0.2-0.3-0.11-0.1+0.07= 0.76
b. P(AnBnC')= P(AnB)-P(AnBnC)
=0.3-0.07= 0.23
c. P(B/A)= P(AnB)/P(A)
=0.3/O.6= 0.5
e. P((AnB)/C))= P((AnB)nC)/P(C)
=P(AnBnC)/P(C)
=0.07/0.2= 0.35
f. P((AUB)/C)= P((AUB)nC)/P(C)
=(P(AnC) U P(BnC))/P(C)
=(0.11+0.1)/0.2
=0.21/0.2 = 0.31
Answer:
Step-by-step explanation:
Our inequality is |125-u| ≤ 30. Let's separate this into two. Assuming that (125-u) is positive, we have 125-u ≤ 30, and if we assume that it's negative, we'd have -(125-u)≤30, or u-125≤30.
Therefore, we now have two inequalities to solve for:
125-u ≤ 30
u-125≤30
For the first one, we can subtract 125 and add u to both sides, resulting in
0 ≤ u-95, or 95≤u. Therefore, that is our first inequality.
The second one can be figured out by adding 125 to both sides, so u ≤ 155.
Remember that we took these two inequalities from an absolute value -- as a result, they BOTH must be true in order for the original inequality to be true. Therefore,
u ≥ 95
and
u ≤ 155
combine to be
95 ≤ u ≤ 155, or the 4th option
<span>In order to find the area of a rectangle, the width must be multiplied by the length. Since we know the length is 7 yards and the width is 4 yards, we can simply multiply these two values together. 4yd x 7yd= 28yds^2.</span>