33333333333333333333333333333333333
By using <span>De Moivre's theorem:
</span>
If we have the complex number ⇒ z = a ( cos θ + i sin θ)
∴
![\sqrt[n]{z} = \sqrt[n]{a} \ (cos \ \frac{\theta + 360K}{n} + i \ sin \ \frac{\theta +360k}{n} )](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bz%7D%20%3D%20%20%5Csqrt%5Bn%5D%7Ba%7D%20%5C%20%28cos%20%5C%20%20%5Cfrac%7B%5Ctheta%20%2B%20360K%7D%7Bn%7D%20%2B%20i%20%5C%20sin%20%5C%20%5Cfrac%7B%5Ctheta%20%2B360k%7D%7Bn%7D%20%29)
k= 0, 1 , 2, ..... , (n-1)
For The given complex number <span>⇒ z = 81(cos(3π/8) + i sin(3π/8))
</span>
Part (A) <span>
find the modulus for all of the fourth roots </span>
<span>∴ The modulus of the given complex number = l z l = 81
</span>
∴ The modulus of the fourth root =
Part (b) find the angle for each of the four roots
The angle of the given complex number =

There is four roots and the angle between each root =

The angle of the first root =

The angle of the second root =

The angle of the third root =

The angle of the fourth root =
Part (C): find all of the fourth roots of this
The first root =

The second root =

The third root =

The fourth root =
Answer:
A: (3^2)*2
B: (2^3)*3
C: 2*19
D: (3^2)*9
Step-by-step explanation:
We have:
A) 18= 3*3*2= (3^2)*2
B) 24=2*2*2*3=(2^3)*3
C) 38 = 2*19
D) 81 =3*3*9=(3^2)*9
-2. or otherwise put as -2/1
Answer:
(3x + 5)(2x - 3) = 6x² + x - 15
Step-by-step explanation:
To find the product of two binomials, we could use the FOIL method.
First
Outer (Outside)
Inner (Inside)
Last
(3x + 5)(2x - 3) = (3x)(2x) + (3x)(-3) + (5)(2x) + (5)(-3) = 6x² - 9x + 10x - 15 = 6x² + x - 15
So the product of the two binomials would be 6x² + x - 15.
I hope you find my answer and explanation to be helpful. Happy studying.