With acceleration

and initial velocity

the velocity at time <em>t</em> (b) is given by




We can get the position at time <em>t</em> (a) by integrating the velocity:

The particle starts at the origin, so
.



Get the coordinates at <em>t</em> = 8.00 s by evaluating
at this time:


so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).
Get the speed at <em>t</em> = 8.00 s by evaluating
at the same time:


This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Answer:
15.6m/s
Explanation:
V1=
because the derivate of the position is the velocity
V1=12t+3
V2=20+
-8t because the integral of the acceleration is the velocity
V2=
V1=V2 to see when the velocities of particles match
12t+3=20-4t^2
4t^2+12t-17=0 we resolve this with 
and we take the positif root
t=1.05 sec
if we evaluate the velocity (V1 or V2) the result is 15.6m/s
<span>. Blue/violet have the shortest wavelengths so they will appear least raised. </span>