Answer:
A score of 150.25 is necessary to reach the 75th percentile.
Step-by-step explanation:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
A set of test scores is normally distributed with a mean of 130 and a standard deviation of 30.
This means that 
What score is necessary to reach the 75th percentile?
This is X when Z has a pvalue of 0.75, so X when Z = 0.675.




A score of 150.25 is necessary to reach the 75th percentile.
Answer:
B. 64.9
Step-by-step explanation:
A graphing calculator or spreadsheet can fit these points with an exponential curve. An appropriate answer for x=14 is about 73.3.
_____
<em>Comment on the answer choices</em>
The closest answer that makes any sense is 64.9. Often these problems are worked by someone who uses inappropriate rounding of intermediate results. I haven't found the magic set of numbers to get 64.9. About the lowest I can get is 66.7, using 0.0037·e^(0.7x).
Combine:
<span>g+24.50
</span><span>7g- 52.34
---------------
8g - 27.84 <= answer</span>
Answer:
Explanation:
To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.
First, we combine like terms, which requires us to identify the terms that can be added or subtracted from each other. Like terms always have the same variable (with the same exponent) attached to them. For example, you can add 1 "x-squared" to 2 "x-squareds" and get 3 "x-squareds", but 1 "x-squared" plus an "x" can't be combined because they're not like terms.
Let's identify some like terms below.
f(x)=−4x+3x2−7+9x−12x2−5x4
Here you can see that -4x and 9x are like terms. When we combine (add) -4x and 9x, we get 5x. So let's write 5x instead:
f(x)=5x+3x2−7−12x2−5x4
Let's do the same thing with the x-squared terms:
f(x)=5x+3x2−7−12x2−5x4
f(x)=5x−9x2−7−5x4
Now there are no like terms left. Our last step is to organize the terms so that x is written in descending power:
f(x)=−5x4−9x2+5x−7
Step-by-step explanation:
A line right or is it a plain i think it is a line yeah go with line