Answer:
A. 5.19 units
Step-by-step explanation:

Given:
= 81°- Arc length = 7.34 units
Substituting given values into the equation and solving for r:






X + (4x+15) = 180
5x+15=180
5x=165
x=33
4(33)+15=147. (Or you could subtract 33 from 180)
Check answer: 33+147=180 yes
Answer:Find the distance between the parallel lines m and n whose equations are y = x + 4 and y = x - 6, respectively.
There are several ways to do this...here's one
Let (0, 4) be a point on the first line
Then.......a line with a negative reciprocal slope going through this point will have the equation :
y = -x + 4........so......we can find the intersection of this line with y = x - 6....set both equations equal
-x + 4 = x - 6 add x, 6 to both sides
10 = 2x divide both sides by 2
5 = x
So...using -x + 4, the y value at intersection = -1.......
So...we just need to find the distance from (0,4) to ( 5, -1) =
√[ (5)^2 + (4 + 1)^2 ] = 5√2 ≈ 7.07 units
Here's a pic....AB is the distance with A = (0,4) and B = (5, -1)
Step-by-step explanation:
Step-by-step explanation:
these are the functions
and the others are not a functions because the domain can't match to more than one
The Equation of a Line
The slope-intercept form of a line can be written as:
y = mx + b
Where m is the slope of the graph of the line and b is the y-intercept.
In the specific case where the line passes through the origin (0,0), we can find the value of b by substituting x=0 and y=0:
0 = m(0) + b
Solving for b:
b = 0.
Thus, the equation of the line reduces to:
y = mx
We only need to find the value of the slope.
That is where we need the second data. Our line is perpendicular to the line of equation 4x + 3y = 6.
Solving for y:

The slope of the second line is -4/3.
We must recall that if two lines of slopes m1 and m2 are perpendicular, then:

Substituting the value of m1 and solving for m2:

The slope of our line is 3/4 and the required equation is:

From this last equation, we need to find the general form of the line.
Multiply both sides of the equation by 4:
4y = 3x
Subtract 3x on both sides:
4y - 3x = 0
Reorder:
-3x + 4y = 0