Nope.
Energy is directly proportional to frequency. and when you calculate energy, you multiply frequency with a constant number called "Planck's Constant"
E = hf
Hope this helps!
Answer:
The temperature of the core raises by
every second.
Explanation:
Since the average specific heat of the reactor core is 0.3349 kJ/kgC
It means that we require 0.3349 kJ of heat to raise the temperature of 1 kg of core material by 1 degree Celsius
Thus reactor core whose mass is
will require

energy to raise it's temperature by 1 degree Celsius in 1 second
Hence by the concept of proportionately we can infer 150 MW of power will increase the temperature by
Answer:
Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation v = Δs/Δt. Speed (or rate, r) is a scalar quantity that measures the distance traveled (d) over the change in time (Δt), represented by the equation r = d/Δt.
Explanation:
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m