Answer:
inversely proportional to the temperature
Explanation:
Wein's displacement law states the wavelength at which Earth’s emitted radiation is maximum <u>is inversely proportional to the temperature</u> at which the wavelength of the Sun’s emitted radiation peaks.
λmax 
where,
λmax is the maximum wavelength
b is a constant of proportionality called Wien's displacement constant (b = 2.897 × 10⁻³ m.K)
T is the absolute temperature in kelvins
<span>Nodes are points along the medium that appear to be standing still. They are points on a standing wave that has no displacement from the rest position.
Antinodes are the opposite of nodes. Those are</span> points that undergo the maximum displacement.
<span>At the nodes the destructive interference occurs</span> . For example <span>a crest of one wave meets a trough of a second wave</span> , or a half-crest of one wave meets a half-trough of a second wave...
Answer:
The current is 
Explanation:
From the question we are told that
The radius is 
The current density is 
The distance we are considering is 
Generally current density is mathematically represented as

Where A is the cross-sectional area represented as

=> 
=> 
Now the change in current per unit length is mathematically evaluated as

Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows


![I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%5Cfrac%7Br%5E4%7D%7B4%7D%20%5D%20%20%7C%20%5Cleft%20%20%20%200.001585%7D%20%5Catop%200%7D%7D%20%5Cright.)
![I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)
substituting values
![I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%20%2A%20%203.142%20%20%2A%20%209.00%20%2A10%5E6%20%2A%20%20%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)

The water particles move perpendicular to the source of the sound wave. The water particles move in the same direction as the vibrating source of the sound wave. The water particles move in random patterns because the sound is diffracted in many directions
The answer to your question is A.