Answer:
so idc![\sqrt[n]{x} \sqrt{x} \alpha \pi x^{2} \\ \left \{ {{y=2} \atop {x=2}} \right. x_{123} \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%5Csqrt%7Bx%7D%20%5Calpha%20%5Cpi%20x%5E%7B2%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x_%7B123%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
443
Step-by-step explanation: its 2 6\7
1 = x + 4
3 = x
2 = 2x + 5
3 = 2x
3/2= x
Answer:
B. The student did not properly apply the addition property to isolate x
Explanation:
When given an equation to solve, always remember that when you do an external operation (add/subtract/multiply a term or divide by a term) on one side of the equation, the same operation should be applied on the other side in order to maintain the equality of the equation.
Now, let's take a look on the steps done:
Step 1:
3 = 2 - x
Step 2:
3 = 2 - 2 - x
Step 3:
3 = -x
Now, note n step 2, the student wanted to get rid of the 2 next to the x, therefore, he subtracted 2. However, the student did not subtract the 2 from the other side of the equation. Since we're taking addition (we're adding a -2), therefore, the student incorrectly applied the addition property to isolate the x.
The correct steps would be as follows:
Step 1:
3 = 2 - x
Step 2:
3 - 2 = 2 - 2 - x
Step 3:
1 = - x
Hope this helps :)
Answer:
4a + 2b + 1/4 c.
Step-by-step explanation:
1/4(16a+8b+c)
= 1/4 * 16a + 1/4 * 8b + 1/4 * c
= 4a + 2b + 1/4 c.