Answer:
reflect over y axis
x+1 y+4
Step-by-step explanation:
The circumference is pi times 5.
So the circumference is 15.7
The area of the part of the plane 3x 2y z = 6 that lies in the first octant is mathematically given as
A=3 √(4) units ^2
<h3>What is the area of the part of the plane 3x 2y z = 6 that lies in the first octant.?</h3>
Generally, the equation for is mathematically given as
The Figure is the x-y plane triangle formed by the shading. The formula for the surface area of a z=f(x, y) surface is as follows:

The partial derivatives of a function are f x and f y.

When these numbers are plugged into equation (1) and the integrals are given bounds, we get:
![&=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \sqrt{(-3)^{2}+(-2)^2+1dxdy} \\\\&=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \sqrt{14} d x d y \\\\&=\sqrt{14} \int_{0}^{2}[y]_{0}^{3-\frac{3}{2} x} d x d y \\\\&=\sqrt{14} \int_{0}^{2}\left[3-\frac{3}{2} x\right] d x \\\\](https://tex.z-dn.net/?f=%26%3D%5Cint_%7B0%7D%5E%7B2%7D%20%5Cint_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-2%29%5E2%2B1dxdy%7D%20%5C%5C%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B2%7D%20%5Cint_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20%5Csqrt%7B14%7D%20d%20x%20d%20y%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%20%5Cint_%7B0%7D%5E%7B2%7D%5By%5D_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20d%20x%20d%20y%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%20%5Cint_%7B0%7D%5E%7B2%7D%5Cleft%5B3-%5Cfrac%7B3%7D%7B2%7D%20x%5Cright%5D%20d%20x%20%5C%5C%5C%5C)
![&=\sqrt{14}\left[3 x-\frac{3}{2} \cdot \frac{1}{2} \cdot x^{2}\right]_{0}^{2} \\\\&=\sqrt{14}\left[3-\frac{3}{2} \cdot \frac{1}{2} \cdot x^{2}\right]_{0}^{2} \\\\&=\sqrt{14}\left[3.2-\frac{3}{2} \cdot \frac{1}{2} \cdot 3^{2}\right] \\\\&=3 \sqrt{14} \text { units }{ }^{2}](https://tex.z-dn.net/?f=%26%3D%5Csqrt%7B14%7D%5Cleft%5B3%20x-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%5E%7B2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%5Cleft%5B3-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%5E%7B2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%5Cleft%5B3.2-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%203%5E%7B2%7D%5Cright%5D%20%5C%5C%5C%5C%26%3D3%20%5Csqrt%7B14%7D%20%5Ctext%20%7B%20units%20%7D%7B%20%7D%5E%7B2%7D)
In conclusion, the area is
A=3 √4 units ^2
Read more about the plane
brainly.com/question/1962726
#SPJ4
Step-by-step explanation:
divide both sides by 4 to isolate the x
x=8
Answer:
Step-by-step explanation:
Unless we set x^2 + 8x + 15 equal to zero, we don't have an equation to be solved. I will assume that the problem is actually x^2 + 8x + 15 = 0.
The coefficients of this quadratic are {1, 8, 15}, and so the "discriminant" b^2 - 4ac is (8)^2 - 4(1)(15), or 4. Because the discriminant is positive, we know that there are two real, unequal roots.
Continuing with the quadratic formula and knowing that the discriminant is 4, we get:
-8 ± √4 -8 ± 2
x = ---------------- = --------------- , or x = -2 ± 1: x = -3 and x = -5
2 2