The question is incomplete. Here is the complete question.
The probability density function of the time to failure of an electronic component in a copier (in hours) is
for x > 0. Determine the probability that
a. A component lasts more than 3000 hours before failure.
b. A componenet fails in the interval from 1000 to 2000 hours.
c. A component fails before 1000 hours.
d. Determine the number of hours at which 10% of all components have failed.
Answer: a. P(x>3000) = 0.5
b. P(1000<x<2000) = 0.2325
c. P(x<1000) = 0.6321
d. 105.4 hours
Step-by-step explanation: <em>Probability Density Function</em> is a function defining the probability of an outcome for a discrete random variable and is mathematically defined as the derivative of the distribution function.
So, probability function is given by:
P(a<x<b) = ![\int\limits^b_a {P(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5Eb_a%20%7BP%28x%29%7D%20%5C%2C%20dx)
Then, for the electronic component, probability will be:
P(a<x<b) = ![\int\limits^b_a {\frac{e^{\frac{-x}{1000} }}{1000} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5Eb_a%20%7B%5Cfrac%7Be%5E%7B%5Cfrac%7B-x%7D%7B1000%7D%20%7D%7D%7B1000%7D%20%7D%20%5C%2C%20dx)
P(a<x<b) = ![\frac{1000}{1000}.e^{\frac{-x}{1000} }](https://tex.z-dn.net/?f=%5Cfrac%7B1000%7D%7B1000%7D.e%5E%7B%5Cfrac%7B-x%7D%7B1000%7D%20%7D)
P(a<x<b) = ![e^{\frac{-b}{1000} }-e^\frac{-a}{1000}](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B-b%7D%7B1000%7D%20%7D-e%5E%5Cfrac%7B-a%7D%7B1000%7D)
a. For a component to last more than 3000 hours:
P(3000<x<∞) = ![e^{\frac{-3000}{1000} }-e^\frac{-a}{1000}](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B-3000%7D%7B1000%7D%20%7D-e%5E%5Cfrac%7B-a%7D%7B1000%7D)
Exponential equation to the infinity tends to zero, so:
P(3000<x<∞) = ![e^{-3}](https://tex.z-dn.net/?f=e%5E%7B-3%7D)
P(3000<x<∞) = 0.05
There is a probability of 5% of a component to last more than 3000 hours.
b. Probability between 1000 and 2000 hours:
P(1000<x<2000) = ![e^{\frac{-2000}{1000} }-e^\frac{-1000}{1000}](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B-2000%7D%7B1000%7D%20%7D-e%5E%5Cfrac%7B-1000%7D%7B1000%7D)
P(1000<x<2000) = ![e^{-2}-e^{-1}](https://tex.z-dn.net/?f=e%5E%7B-2%7D-e%5E%7B-1%7D)
P(1000<x<2000) = 0.2325
There is a probability of 23.25% of failure in that interval.
c. Probability of failing between 0 and 1000 hours:
P(0<x<1000) = ![e^{\frac{-1000}{1000} }-e^\frac{-0}{1000}](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B-1000%7D%7B1000%7D%20%7D-e%5E%5Cfrac%7B-0%7D%7B1000%7D)
P(0<x<1000) = ![e^{-1}-1](https://tex.z-dn.net/?f=e%5E%7B-1%7D-1)
P(0<x<1000) = 0.6321
There is a probability of 63.21% of failing before 1000 hours.
d. P(x) = ![e^{\frac{-b}{1000} }-e^\frac{-a}{1000}](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B-b%7D%7B1000%7D%20%7D-e%5E%5Cfrac%7B-a%7D%7B1000%7D)
0.1 = ![1-e^\frac{-x}{1000}](https://tex.z-dn.net/?f=1-e%5E%5Cfrac%7B-x%7D%7B1000%7D)
![-e^{\frac{-x}{1000} }=-0.9](https://tex.z-dn.net/?f=-e%5E%7B%5Cfrac%7B-x%7D%7B1000%7D%20%7D%3D-0.9)
![{\frac{-x}{1000} }=ln0.9](https://tex.z-dn.net/?f=%7B%5Cfrac%7B-x%7D%7B1000%7D%20%7D%3Dln0.9)
-x = -1000.ln(0.9)
x = 105.4
10% of the components will have failed at 105.4 hours.