A because centrifugal is to velocity to how slow or fast something is and centrifugal has expresssed as ac=v2 / r (1)<span />
Al(OH)3 = 26.98 + [(16×3) + (1.01×3)] = 26.98 + 51.03 = 78.01 and the unit will be g/mol
<h3>
<em>Al(OH)3 = 78.01 g/mol</em></h3>
Answer:
A. The applied force should be the same size as the friction force
Explanation:
Whenever we apply a force to an object it moves if the force applied to that object is unbalanced and there is no force or a lesser force to counter it. According to Newton's Second Law of motion, when an unbalanced force is applied to an object it produces an acceleration in the object in its own direction. So, the two forces acting on this box are the frictional force and the applied force in horizontal direction. In order to move the box at constant speed, the applied force must first, overcome the frictional force, so the object can start its motion. Since, the motion has constant velocity, it means no acceleration. So, the force must be balanced in order to avoid acceleration as a consequence of Newton's Second Law of motion. Therefore, the correction in this case will be:
<u>A. The applied force should be the same size as the friction force</u>
1) sound velocity reported by you : 292.39 m /s
2) time to travel 1620m at that velocity: t = d / v = 1620 m / 292.39 m/s = 5.54 s, since the moment the sound wave started.
3) You might wanted to tell the time since you watched the lightning.
Then you can calculate the time since the lighting was generated,1620 m away from you, until you saw it, using the speed of light:
speed of light = 3*10^8 m/s => t = 1620 m / (3*10^8m/s) =0.0000054 s
Then, this time is completely neglectible, and yet the answer is 5.54 s, as calculated in the step 2.
The answer would probably be B.