Answer:
it is separated by 80 cm distance
Explanation:
As per Coulombs law we know that force between two point charges is given by

here we know that


force between two charges is given as

now we have



so it is separated by 80 cm distance
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56
Answer:
k = 104.46 N/m
Explanation:
Here we can use energy conservation
so we will have
initial gravitational potential energy = final total spring potential energy
as we know that she falls a total distance of 31 m
while the unstretched length of the string is 12 m
so the extension in the string is given as


so we have



Answer:
By turning the vehicle "ON" position you can check to see if the gauges light works.
When we switch ON or turn a key to ON the engine, we can find all the gauges working or not.
Answer:
d' = d /2
Explanation:
Given that
Distance = d
Voltage =V
We know that energy in capacitor given as



If energy become double U' = 2 U then d'



2 d ' = d
d' = d /2
So the distance between plates will be half on initial distance.