A )
t 1 = 2 h, t 2 = 6 h
Δ t = t 2 - t 1 = 6 - 2 = 4 h
54 = 50 + a Δ t
54 = 50 + 4 a
4 a = 54 - 4
4 a = 4
a = 4 : 4
a = 1 km/h²
v o = 48 km/h
An equation that can be used to describe the velocity of the car at the different times is:
v = 48 + t
B ) The graph is in the attachment.
Answer:
in this video waves are coming up for the BOTTOM to the top of the sandbar
To answer this question is necessary to apply the concepts related to Bernoulli's equation. The Bernoulli-related concept describes the behavior of a liquid moving along a streamline. Pressure can be defined as the proportional ratio between height, density and gravity:

Where,
h = Height
= Density
g = Gravity
Our values are
density of water at normal conditions
h = 7.3m

PART A) Replacing these values to find the total pressure difference we have to



In this way the pressure change would be subject to




PART B) Considering the pressure gauge of the group as the ideal so that at a height H the water cannot flow even if it is open we have to,



Therefore the high which could a faucet be before no water would flow from it is 21.42m
Answer:
I think the answer will be water ,sorry if ik wrong
The answswer would be d because there is a battery, and a metal clip to conduct electricity.
hope this helps! C: