1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
10

Who is known as the father of India​

Physics
2 answers:
balandron [24]3 years ago
6 0

Answer:

the answer is

Mahatma Gandhi

Jlenok [28]3 years ago
4 0

Answer:

Mahatma Gandhi

<h3>hope it helps.</h3>
You might be interested in
Explain how a form of<br> energy is used in daily life
hram777 [196]

Answer:

When we talk about residential uses of energy, these are the most basic uses of energy . They include watching television, washing clothes, heating and lighting at home , taking a shower, working from home on your laptop or computer, running appliances and cooking.

3 0
3 years ago
A car starts from rest and undergoes an acceleration of 4.0 m/s/s for a time of 5.0 s. What is the final velocity of the car?
Kruka [31]

Answer:

20m/s

Explanation:

acceleration=final velocity-initial velocity/time

4.0m/s²=v m/s-0m/s/5.0sec

5.0sec×4.0m/s²=v m/s-0m/s×5.0m/s/5.0m/s

20m/s=v

7 0
3 years ago
1. How does RNA differ from DNA?
9966 [12]
The answer is c) RNA contains uracil and ribose.
7 0
3 years ago
Read 2 more answers
What is the formula that describes the magnitude of impulse on an object?
vladimir1956 [14]

Answer:

Option C.

Impulse = mass × change in velocity

Explanation:

Impulse is defined by the following the following formula:

Impulse = force (F) × time (t)

Impulse = Ft

From Newton's second law of motion,

Force = change in momentum /time

Cross multiply

Force × time = change in momentum

Recall:

Impulse = Force × time

Thus,

Impulse = change in momentum

Recall:

Momentum = mass x velocity

Momentum = mv

Chang in momentum = mass × change in velocity

Change in momentum = mΔv

Thus,

Impulse = change in momentum

Impulse = mass × change in velocity

8 0
3 years ago
An air-track glider with a mass of 239 g is moving at 0.81 m/s on a 2.4 m long air track. It collides elastically with a 513 g g
HACTEHA [7]

Answer:

Glider it stops just when it reaches the end of the runway

Explanation:

This is a shock between two bodies, so we must use the equations of conservation of the amount of movement, in the instant before the crash and the subsequent instant, with this we calculate the second glider speed, as the shock that elastic is also keep it kinetic energy

        Po = pf

        Ko = Kf

 Before crash

       Po = m1 Vo1 + 0

       Ko = ½ m1 Vo1²

 

After the crash

       Pf = m1 Vif + Vvf

       Kf = ½ m1 V1f² + ½ m2 V2f²

 

      m1 V1o = m1 V1f + m2 V2f           (1)

      m1 V1o² = m1 V1f² + m2 V2f²      (2)

We see that we have two equations with two unknowns, so the system is solvable,  we substitute in 1 and 2

   

     m1 (V1o -V1f) = m2 V2f      (3)

      m1 (V1o² - V1f²) = m2 V2f²

Let's use the relationship      (a + b) (a-b) = a² -b²

     m1 (V1o + V1f) (V1o -V1f) = m2 V2f²

We divide  with 3 and simplify

      (V1o + V1f) = V2f      (4)

Substitute in 3, group and clear

         m1 (V1o - V1f) = m2 (V1o + V1f)

         m1 V1o - m2 V1o = m2 V1f + m1 V1f

         V1f (m1 -m2) = V1o (m1 + m2)

         V1f = V1o  (m1-m2 / m1+m2)

We substitute in (4) and group

         V2f = V1o + (m1-m2 / m1 + m2) V1o

         V2f = V1o [1+ + (m1-m2 / m1 + m2)]

         V2f = V1o (2m1 / (m1+m2)

We calculate with the given values

         V1f = 0.81 (239-513 / 239 + 513)

         V1f = 0.81 (-274/752)

         V1f = - 0.295 m/s

The negative sign indicates that the planned one moves in the opposite direction to the initial one

         V2f = 0.81 [2 239 / (239 + 513)]

        V2f = 0.81 [0.636]

        V2f = 0.515 m / s

Now we analyze in the second glider movement only, we calculate the energy and since there is no friction,

         Eo = Ef

Where Eo is the mechanical energy at the lowest point and Ef is the mechanical energy at the highest point

         Eo = K = ½ m2 vf2²

         Ef = U = m2 g Y

   

         ½ m2 v2f² = m2 g Y

         Y = V2f² / 2g

         Y = 0.515²/2 9.8

         Y = 0.0147 m

At this height the planned stops, let's use trigonometry to find the height at the end of the track of the track

         tan θ = Y / x

         Y = x tan θ

The crash occurs in the middle of the track whereby x = 1.2 m

        Y = 1.2 tan 0.7

        Y = 0.147 m

As the two quantities are equal in glider it stops just when it reaches the end of the runway

7 0
3 years ago
Other questions:
  • A spring is compressed by 0.02m. Calculate the energy stored in the spring if the force constant is 400Nm-1
    15·1 answer
  • The space shuttle travels at about 28,000 km per hour. Using that information, estimate how many hours it will take the shuttle
    11·1 answer
  • Which pair of countries are both part of the crib Caribbean cultural regions in North America
    12·1 answer
  • The force of gas particles against the walls of a container is called ________
    11·1 answer
  • A sound-producing object is moving away from an observer. The sound the observer hears will have a frequency that actually being
    10·2 answers
  • What does physics have to do with science and chemistery
    11·1 answer
  • Which graph shows uniform motion.​
    11·2 answers
  • The is the sac-like structure that holds the testes.
    7·2 answers
  • PLEASE HELP 15 POINTSexplain properties and importance of light and how it separates into colors
    6·1 answer
  • The formula for electrical power is p = i v. Which is the equivalent equation solved for i? startfraction p over v endfraction =
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!