Answer:
What is the question that you are asking?
Step-by-step explanation:
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is

a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,

For this particular integral, first integrate by parts, taking


![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking


![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is

which can be handled with the same substitution used in part (a). We get

c. Same procedure as in (b). We have

and

Then

9514 1404 393
Answer:
in order by function: 0.6, 8, 7/3, 2, 1/2
Step-by-step explanation:
The functions are given in the form ...
f(x) = a·b^x
The "b" value is the value immediately to the left of the exponent. (It's not rocket science; it's pattern matching.) Note that the minus sign in g(x) is part of 'a', not part of 'b'.
From the top-down, the functions listed on the left have the b-values shown above.
Answer:
1st term: 1, 2nd term: 3, 3rd term: 5, 4th term: 7 & 10th term: 19
Step-by-step explanation:
1st term: 2(1) - 1
2 - 1 = 1
2nd term: 2(2) - 1
4 - 1 = 3
3rd term: 2(3) - 1
6 - 1 = 5
4th term: 2(4) - 1
8 - 1 = 7
10th term: 2(10) -1
20 - 1 = 19