1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
8

What is the equation of the line x-3y = 18 in slope-intercept form drag and drop the appropriate number,symbol, or variable to e

ach box.

Mathematics
1 answer:
Jobisdone [24]3 years ago
6 0
Simple...

you have: x-3y=18

You want to convert it into slope-intercept form or y=mx+b form-->>>

x-3y=18

Isolate the variable-->>

x-3y=18
-x      -x

-3y=-x+18

Now simply divide...



y=
You might be interested in
A rectangle is 3 1/3 ft long and 2 1/3 feet wide. What is the distance around the rectangle?
Sonja [21]
3 1/3= 10/3
2 1/3= 7/3
7/3 + 10/3= 17/3
17/3 (2)+ 34/3
34/3= 11 1/3
final answer = 11 1/3
8 0
3 years ago
Read 2 more answers
Michael is 3 times as old as Brandon. 18 years ago, Michael was 9 times as old as Brandon.
Zigmanuir [339]
I hope this helps you


Brandon x


Michael 3x


18 years ago


Brandon x-18


Michael 3x-18


9 (x-18)=3x-18


9x-9.18=3x-18

9x-3x=9.18-18

6x=8.18

x=8.3

x= 24
5 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
There are 180 cars in the parking lot 30% are red cars how many red cards are there
Yuri [45]
There are 54 red cars
7 0
2 years ago
Read 2 more answers
Help pls pls pls<br><br> 4 x 10<br> plssss plz plz plzz so hard
mrs_skeptik [129]

Answer:

40

Step-by-step explanation:

4 x 10= 40

PlZ add brainliest.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Thank you in advance for the help !!!
    7·1 answer
  • The temperature outside dropped 13 degrees Fahrenheit in 7 hours. The final temperature was -2 degrees Fahrenheit. What was the
    6·1 answer
  • J Problem: Find the slope of a line parallel to each given line. 5) y = 3x - 5​
    11·1 answer
  • 5 different mixed numbers that add up to 10 with only 3rds and 4ths
    13·1 answer
  • Simplify using Addition:<br> 12x-10+5x+13
    15·1 answer
  • How many significant digits are in 80,000
    8·2 answers
  • A graph of a function in the photo, all blanks have these same answer choices.<br><br> PLEASE ANSWER
    10·1 answer
  • Solve the inequality: 1/3x + 8 _&lt; 11
    8·2 answers
  • PLEASE HELP! I REALLY NEED AN ANSWER, I CAN'T FIGURE IT OUT!
    9·1 answer
  • Solve for x if the three angles of a triangle are: x, 45 degrees, and 5x degrees
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!