1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eduard
3 years ago
5

One of the industrial robots designed by a leading producer of servomechanisms has four major components. Components’ reliabilit

ies are 0.98, 0.95, 0.94, and 0.90. All of the components must function in order for the robot to operate effectively. a. Compute the reliability of the robot. (Round your answer to 4 decimal places.) Reliability b1. Designers want to improve the reliability by adding a backup component. Due to space limitations, only one backup can be added. The backup for any component will have the same reliability as the unit for which it is the backup. Compute the reliability of the robot. (Round your answers to 4 decimal places.) Reliability Component 1 Component 2 Component 3 Component 4 b2. Which component should get the backup in order to achieve the highest reliability? Component 1 Component 2 Component 3 Component 4 c. If one backup with a reliability of 0.92 can be added to any one of the main components, which component should get it to obtain the highest overall reliability? Component 1 Component 2 Component 3 Component 4
Mathematics
1 answer:
Ivahew [28]3 years ago
4 0

Answer:

a) Reliability of the Robot = 0.7876

b1) Component 1: 0.8034

    Component 2: 0.8270

    Component 3: 0.8349

    Component 4: 0.8664

b2) Component 4 should get the backup in order to achieve the highest reliability.

c) Component 4 should get the backup with a reliability of 0.92, to obtain the highest overall reliability i.e. 0.8681.

Step-by-step explanation:

<u>Component Reliabilities:</u>

Component 1 (R1) : 0.98

Component 2 (R2) : 0.95

Component 3 (R3) : 0.94

Component 4 (R4) : 0.90

a) Reliability of the robot can be calculated by considering the reliabilities of all the components which are used to design the robot.

Reliability of the Robot = R1 x R2 x R3 x R4

                                      = 0.98 x 0.95 x 0.94 x 0.90

Reliability of the Robot = 0.787626 ≅ 0.7876

b1) Since only one backup can be added at a time and the reliability of that backup component is the same as the original one, we will consider the backups of each of the components one by one:

<u>Reliability of the Robot with backup of component 1</u> can be computed by first finding out the chance of failure of the component along with its backup:

Chance of failure = 1 - reliability of component 1

                             = 1 - 0.98

                             = 0.02

Chance of failure of component 1 along with its backup = 0.02 x 0.02 = 0.0004

So, the reliability of component 1 and its backup (R1B) = 1 - 0.0004 = 0.9996

Reliability of the Robot = R1B x R2 x R3 x R4

                                         = 0.9996 x 0.95 x 0.94 x 0.90

Reliability of the Robot = 0.8034

<u>Similarly, to find out the reliability of component 2:</u>

Chance of failure of component 2 = 1 - 0.95 = 0.05

Chance of failure of component 2 and its backup = 0.05 x 0.05 = 0.0025

Reliability of component 2 and its backup (R2B) = 1 - 0.0025 = 0.9975

Reliability of the Robot = R1 x R2B x R3 x R4

                = 0.98 x 0.9975 x 0.94 x 0.90

Reliability of the Robot = 0.8270

<u>Reliability of the Robot with backup of component 3 can be computed as:</u>

Chance of failure of component 3 = 1 - 0.94 = 0.06

Chance of failure of component 3 and its backup = 0.06 x 0.06 = 0.0036

Reliability of component 3 and its backup (R3B) = 1 - 0.0036 = 0.9964

Reliability of the Robot = R1 x R2 x R3B x R4  

                = 0.98 x 0.95 x 0.9964 x 0.90

Reliability of the Robot = 0.8349

<u>Reliability of the Robot with backup of component 4 can be computed as:</u>

Chance of failure of component 4 = 1 - 0.90 = 0.10

Chance of failure of component 4 and its backup = 0.10 x 0.10 = 0.01

Reliability of component 4 and its backup (R4B) = 1 - 0.01 = 0.99

Reliability of the Robot = R1 x R2 x R3 x R4B

                                      = 0.98 x 0.95 x 0.94 x 0.99

Reliability of the Robot = 0.8664

b2) According to the calculated values, the <u>highest reliability can be achieved by adding a backup of component 4 with a value of 0.8664</u>. So, <u>Component 4 should get the backup in order to achieve the highest reliability.</u>

<u></u>

c) 0.92 reliability means the chance of failure = 1 - 0.92 = 0.08

We know the chances of failure of each of the individual components. The <u>chances of failure</u> of the components along with the backup can be computed as:

Component 1 = 0.02 x 0.08 = 0.0016

Component 2 = 0.05 x 0.08 = 0.0040

Component 3 = 0.06 x 0.08 = 0.0048

Component 4 =  0.10 x 0.08 = 0.0080

So, the <u>reliability for each of the component & its backup</u> is:

Component 1 (R1BB) = 1 - 0.0016 = 0.9984

Component 2 (R2BB) = 1 - 0.0040 = 0.9960

Component 3 (R3BB) = 1 - 0.0048 = 0.9952

Component 4 (R4BB) = 1 - 0.0080 = 0.9920

<u>The reliability of the robot with backups</u> for each of the components can be computed as:

Reliability with Component 1 Backup = R1BB x R2 x R3 x R4

                                                              = 0.9984 x 0.95 x 0.94 x 0.90

Reliability with Component 1 Backup = 0.8024

Reliability with Component 2 Backup = R1 x R2BB x R3 x R4

                                                              = 0.98 x 0.9960 x 0.94 x 0.90

Reliability with Component 2 Backup = 0.8258

Reliability with Component 3 Backup = R1 x R2 x R3BB x R4

                                                               = 0.98 x 0.95 x 0.9952 x 0.90

Reliability with Component 3 Backup = 0.8339

Reliability with Component 4 Backup = R1 x R2 x R3 x R4BB

                                                              = 0.98 x 0.95 x 0.94 x 0.9920

Reliability with Component 4 Backup = 0.8681

<u>Component 4 should get the backup with a reliability of 0.92, to obtain the highest overall reliability i.e. 0.8681. </u>

You might be interested in
Find the work done in winding up a 175 ft cable that weighs 3 lb/ft.
nignag [31]

Answer:

work \ done= 45937.5

Step-by-step explanation:

Work done is given by

work \ done=\int_a^b w(d-x) \ dx , where d = length of cable and w = weight of cable.

Here, d = 175 ft and w = 3 lb/ft

Now, work \ done=\int_0^{175} 3(175-x) \ dx

work \ done= 3\left [175x-\frac{x^2}{2}  \right ]_0^{175}

work \ done= 3\left [175^2-\frac{175^2}{2}  \right ]

work \ done= 3\cdot \frac{175^2}{2}

work \ done= 45937.5

8 0
4 years ago
lindsey read a total 85 books over 17 months. if lindsey has read 105 books so far, how many months has she been with her book c
Soloha48 [4]

Answer:

Step-by-step explanation:

8 0
3 years ago
Consider the right triangular prism given AC = 9 cm
Oduvanchick [21]

Answer:

1 3 4 5

Step-by-step explanation:

Bc

3 0
4 years ago
Read 2 more answers
Which ratios of side lengths are equal to tan (a) ?
Eddi Din [679]

Answer:

tan(\alpha)=\frac{opposite}{adjacent}

Step-by-step explanation:

tan(\alpha)=\frac{opposite}{adjacent}

4 0
2 years ago
Read 2 more answers
The question is in the photo.
netineya [11]

Answer:

1

0.8

0.4

Step-by-step explanation:

y = 5x

Substituting '5':

5 = 5x

x = 5/5

x = 1

Substituting 4:

4 = 5x

x = 4/5

x = 0.8

Substituting 2:

2 = 5x

x = 2/5

x = 0.4

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the distance between the points (0,5) and (-4,2)
    11·1 answer
  • Describe a Whats a real-life example that you can represent by -1200
    15·1 answer
  • Which simpler problems could be calculated to solve this problem?
    9·2 answers
  • If 4x-3y=2, what is the value of 16^x/8^y
    15·1 answer
  • How to cancel 10+5/12*9l​
    9·1 answer
  • A rectangular fish tank has a base that is 9 inches
    14·1 answer
  • The table shows the number of adults, teens, and children
    14·1 answer
  • Estimate the quotient: 16 3/4 divided by 4 2/3. Show your work.
    15·2 answers
  • Trisha needs to drop off some party invitations. From home, she drives 10 kilometers east, 20 kilometers north, 10 kilometers we
    15·1 answer
  • 30 POINTS
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!