Answer:
C. 2, 1
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given



Required
Determine the length of LS
Since H is between L and S, then

Substitute 14x - 21 for LS, 15 for LH and 8x for HS

Collect Like Terms


Divide both sides by 6

Substitute 6 for x in 



<em>Hence, the length of LS is 63 units</em>
Answer:
1. y' = 3x² / 4y²
2. y'' = 3x/8y⁵[(4y³ – 3x³)]
Step-by-step explanation:
From the question given above, the following data were obtained:
3x³ – 4y³ = 4
y' =?
y'' =?
1. Determination of y'
To obtain y', we simply defferentiate the expression ones. This can be obtained as follow:
3x³ – 4y³ = 4
Differentiate
9x² – 12y²dy/dx = 0
Rearrange
12y²dy/dx = 9x²
Divide both side by 12y²
dy/dx = 9x² / 12y²
dy/dx = 3x² / 4y²
y' = 3x² / 4y²
2. Determination of y''
To obtain y'', we simply defferentiate above expression i.e y' = 3x² / 4y². This can be obtained as follow:
3x² / 4y²
Let:
u = 3x²
v = 4y²
Find u' and v'
u' = 6x
v' = 8ydy/dx
Applying quotient rule
y'' = [vu' – uv'] / v²
y'' = [4y²(6x) – 3x²(8ydy/dx)] / (4y²)²
y'' = [24xy² – 24x²ydy/dx] / 16y⁴
Recall:
dy/dx = 3x² / 4y²
y'' = [24xy² – 24x²y (3x² / 4y² )] / 16y⁴
y'' = [24xy² – 18x⁴/y] / 16y⁴
y'' = 1/16y⁴[24xy² – 18x⁴/y]
y'' = 1/16y⁴[(24xy³ – 18x⁴)/y]
y'' = 1/16y⁵[(24xy³ – 18x⁴)]
y'' = 6x/16y⁵[(4y³ – 3x³)]
y'' = 3x/8y⁵[(4y³ – 3x³)]
tax reduction: $20.34
amount you're paid minus tax: $657.66
Answer:
5 units
Step-by-step explanation:
According to the given statement Δ XYZ is translated 4 units up and 3 units left to yield ΔX'Y'Z' which means that each point in ΔXYZ is moved 4 units up and moved 3 units left.
To find the distance of each corresponding point we will use the Pythagorean theorem which states that the square of the length of the Pythagorean of a right triangle is equal to the sum of the squares of the length of other legs
The square of the required distance = 4^2+3^2 = 16+9 =25
By taking root of 25 we get:
√25 = 5
Thus, we can conclude that the the distance between any two corresponding points on ΔXYZ and ΔX′Y′Z′ is 5 units.
..