Let X be the score on an english test which is normally distributed with mean of 31.5 and standard deviation of 7.3
μ = 31.5 and σ =7.3
Here we have to find score that separates the top 59% from the bottom 41%
So basically we have to find here x value such that area above it is 59% and below it is 49%
This is same as finding z score such that probability below z score is 0.49 and above probability is 0.59
P(Z < z) = 0.49
Using excel function to find the z score for probability 0.49 we get
z = NORM.S.INV(0.49)
z = -0.025
It means for z score -0.025 area below it is 41% and above it is 59%
Now we will convert this z score into x value using given mean and standard deviation
x = (z* standard deviation) + mean
x = (-0.025 * 7.3) + 31.5
x = 31.6825 ~ 31.68
The score that separates the top 59% from the bottom 41% is 31.68
Answer:

Step-by-step explanation:
ΔABC and ΔADB are similar (AAA).
Therefore the corresponging sides are in proportion:

Substitute:

<em>cross multiply</em>

Answer:
x = 50
Step-by-step explanation:
When two secants intersect in the interior of a circle, the angles formed are the average of the arc an angle and its vertical intercept. In this case, our angle, 73, should be the average of x and 96. We can translate this to an equation and solve:

x + 96 = 146
x = 50
Answer: 153
Step-by-step explanation:
area of rectangle= 16 x 3= 48
area of trapezium= 1/2(a+b)h
=1/2(16+5)x 10
=105
105+48= <u>153 in^2</u>
Answer:
x = -2
y = -1
(-2, -1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
- Solving systems of equations by graphing
Step-by-step explanation:
<u>Step 1: Define systems</u>
y = x + 1
3x + 3y = -9
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 3x + 3(x + 1) = -9
- Distribute 3: 3x + 3x + 3 = -9
- Combine like terms: 6x + 3 = -9
- Isolate <em>x</em> term: 6x = -12
- Isolate <em>x</em>: x = -2
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = x + 1
- Substitute in <em>x</em>: y = -2 + 1
- Add: y = -1
<u>Step 4: Graph systems</u>
<em>Check the solution set.</em>