Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:Chemical reactions often involve changes in energy due to the breaking and formation of bonds. Reactions in which energy is released are exothermic reactions, while those that take in heat energy are endothermic. exothermicA description of a chemical reaction that releases heat energy to its surroundings.
Explanation:
An ionic solution is when a compound's ions in an aqueous solution have dissociated. As you combine two aqueous solutions, a reaction occurs. This is when you find out whether or not a precipitate is going to form. A precipitate occurs when the ion reaction component in water is insoluble.The formation of a precipitate is an indication that a chemical change has occurred. for example if we mix clear solutions of silver nitrate and sodium chloride, sodium nitrate is formed which is a precipitate.
<span>Scientific knowledge
can be gained through experiment by doing a thorough experimental procedure
that will enable to answer the objectives of the experiment that will lead to a
scientific knowledge. Through experimentation you can know the behavior of a
variable with respect to a certain variable. This can also answer some
knowledge gap about certain topic</span>
The molecular formula for aspartame is C14H18N2O5, and its molar mass is about 294 g/mol.
Convert 1.2 g into moles, which gives
1.2 g / 294 g/mol = 4.08 X 10-3 moles aspartame.
Since each mole of aspartame has 2 moles of nitrogen, you have 8.16 X 10-3 moles of N in your 1.2 grams of aspartame.
Finally, multiply that by Avogadro's number to get the number of N atoms:
8.16 X 10^-3 mol X 6.02 X 10^23 = 4.9 X 10^21 nitrogen atoms.