Answer:
- 2x³
Step-by-step explanation:
f(x) - g(x)
=
- x - (2x³ -
- x) ← distribute parenthesis by - 1
=
- x - 2x³ +
+ x ← collect like terms )
= - 2x³
The difference between Tucker and Karly's take is that Tucker's solution is analytical while Karly's is graphical. But both are correct either way.
For Tucker's solution, let's say at x=-3 the value for y is 4, and at x=3, the value of y is still 4, then the average rate of change or slope is 0. Note that the slope of the curve is Δy/Δx. Since there is no change for Δy, the slope is zero.
For Karly's solution, even if the curve travels high or low but would have the same elevation of x=-3 and x=3, the average rate of change is still zero. It is actually just same with Tucker's but Karly just verbalizes her solution that was observed visually.
The answer is 8, because 64÷8= 8!simple
Answer:
Length of B is 7.4833
Step-by-step explanation:
The vector sum of A and B vectors in 2D is

And its magnitude is:

Where




Using the properties of the sum of two angles in the sin and cosine:


Sustituying in the magnitud of the sum




Solving for B


Sustituying the value of the magnitud of A

