Answer:
95% Confidence interval for the variance:

95% Confidence interval for the standard deviation:

Step-by-step explanation:
We have to calculate a 95% confidence interval for the standard deviation σ and the variance σ².
The sample, of size n=8, has a standard deviation of s=2.89 miles.
Then, the variance of the sample is

The confidence interval for the variance is:

The critical values for the Chi-square distribution for a 95% confidence (α=0.05) interval are:

Then, the confidence interval can be calculated as:

If we calculate the square root for each bound we will have the confidence interval for the standard deviation:

<h3> given:</h3>
<u>
</u>
<u>
</u>
<h3>to find:</h3>
the radius of the cone.
<h3>solution:</h3>




<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>radius</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>cone</u><u> </u><u>is</u><u> </u><u>5.05</u><u> </u><u>centimeters</u><u>.</u>
Answer:

Step-by-step explanation:
Hello!
Let's use the square root property to solve this question
Solve:
The answer is option A: x = ±2√3
Answer:
B: 200
Step-by-step explanation:
The sqr of 200 is equal to 14.14. when plugged into the perimeters 13.8<x<14.5 , 14.14 satisfies the condition