B.To gain financially by combining two peoples's labor
Answer:
In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that he or she is lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied.
Explanation:
A blimp needs to be moored when not flying because plenty of space is needed so the blimp has to be free. They have to be moored by the front end to a tall mast on a truck specially equipped for this purpose.
I have Aviation History so I kinda of undertsnd.
HOPE THIS HELPS. :)
"Critical region" redirects here. For the computer science notion of a "critical section", sometimes called a "critical region", see critical section.
A statistical hypothesis is a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables.[1] A statistical hypothesis test is a method of statistical inference. Commonly, two statistical data sets are compared, or a data set obtained by sampling is compared against a synthetic data set from an idealized model. A hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship between two data sets. The comparison is deemed statistically significant if the relationship between the data sets would be an unlikely realization of the null hypothesis according to a threshold probability—the significance level. Hypothesis tests are used in determining what outcomes of a study would lead to a rejection of the null hypothesis for a pre-specified level of significance. The process of distinguishing between the null hypothesis and the alternative hypothesis is aided by identifying two conceptual types of errors (type 1 & type 2), and by specifying parametric limits on e.g. how much type 1 error will be permitted.
An alternative framework for statistical hypothesis testing is to specify a set of statistical models, one for each candidate hypothesis, and then use model selection techniques to choose the most appropriate model.[2] The most common selection techniques are based on either Akaike information criterion or Bayes factor.
Statistical hypothesis testing is sometimes called confirmatory data analysis. It can be contrasted with exploratory data analysis, which may not have pre-specified hypotheses.