Answer:
Cubic polynomial has zeros at x=−1x=−1 and 22, is tangent to x−x−axis at x=−1x=−1, and passes through the point (0,−6)(0,−6).
So cubic polynomial has double zero at x=−1x=−1, and single zero at x=2x=2
f(x)=a(x+1)2(x−2)f(x)=a(x+1)2(x−2)
f(0)=−6f(0)=−6
a(1)(−2)=−6a(1)(−2)=−6
a=3a=3
f(x)=3(x+1)2(x−2)f(x)=3(x+1)2(x−2)
f(x)=3x3−9x−6
A times 34 idfbutcgnjytfxvhitd
An example would be money! Money is a real life situation
The coordinates of the pre-image of point F' is (-2, 4)
<h3>How to determine the coordinates of the pre-image of point F'?</h3>
On the given graph, the location of point F' is given as:
F' = (4, -2)
The rule of reflection is given as
Reflection across line y = x
Mathematically, this is represented as
(x, y) = (y, x)
So, we have
F = (-2, 4)
Hence, the coordinates of the pre-image of point F' is (-2, 4)
Read more about transformation at:
brainly.com/question/4289712
#SPJ1
GIRL WHATS THE QUESTION?! PICTURE?