Answer:
1 2 3 1
Step-by-step explanation:
To find the greatest common factor (GCF) between monomials, take each monomial and write it's prime factorization. Then, identify the factors common to each monomial and multiply those common factors together. Bam!
If triangle MAS ≅ triangle TAR, the statement that could be false is letter <span>B) segment MA ≅ segment SA.
This can be false because these two congruent triangles can be 2 scalene triangles. So, segment M</span>A can never be equal to segment SA. This can be true though, if and only if these triangles are isosceles triangles where 2 sides are equal. (See attached file to fully understand).
The strategy that Lucy uses to recall her phone number is what is known as Chunking.
<h3>What is Memory?</h3>
This refers to the place where information is stored for future use and can either be a short or long-term memory.
Hence, we can see that based on the breaking down of her phone numbers of Lucy into a particular format that separates them using country/state code, she is making use of chunking.
This method of chunking is effective because it would help Lucy to recall her number quite easily.
Read more about memory here:
brainly.com/question/24688176
#SPJ1
Answer: ![\frac{\sqrt[4]{10xy^3}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D)
where y is positive.
The 2y in the denominator is not inside the fourth root
==================================================
Work Shown:
![\sqrt[4]{\frac{5x}{8y}}\\\\\\\sqrt[4]{\frac{5x*2y^3}{8y*2y^3}}\ \ \text{.... multiply top and bottom by } 2y^3\\\\\\\sqrt[4]{\frac{10xy^3}{16y^4}}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{16y^4}} \ \ \text{ ... break up the fourth root}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{(2y)^4}} \ \ \text{ ... rewrite } 16y^4 \text{ as } (2y)^4\\\\\\\frac{\sqrt[4]{10xy^3}}{2y} \ \ \text{... where y is positive}\\\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%7D%7B8y%7D%7D%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%2A2y%5E3%7D%7B8y%2A2y%5E3%7D%7D%5C%20%5C%20%5Ctext%7B....%20multiply%20top%20and%20bottom%20by%20%7D%202y%5E3%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B10xy%5E3%7D%7B16y%5E4%7D%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B16y%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20break%20up%20the%20fourth%20root%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B%282y%29%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20rewrite%20%7D%2016y%5E4%20%5Ctext%7B%20as%20%7D%20%282y%29%5E4%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D%20%5C%20%5C%20%5Ctext%7B...%20where%20y%20is%20positive%7D%5C%5C%5C%5C%5C%5C)
The idea is to get something of the form
in the denominator. In this case, 
To be able to reach the
, your teacher gave the hint to multiply top and bottom by
For more examples, search out "rationalizing the denominator".
Keep in mind that
only works if y isn't negative.
If y could be negative, then we'd have to say
. The absolute value bars ensure the result is never negative.
Furthermore, to avoid dividing by zero, we can't have y = 0. So all of this works as long as y > 0.
Let x be the number of minutes of 5.8*10^6 seconds.
Each minute is made of 60 seconds. Let's then use the rule of three:
60 seconds --> 1 minute
5.8*10^6 --> x minutes
x = (5.8*10^6)*1 / 60
x ≈ 96,666.66 minutes.
So 5.8*10^6 seconds is about 96,666.66 minutes.
Hope this Helps! :)