1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
9

How many moles of H2O will be produced from 42.0g of H2O2

Chemistry
1 answer:
IceJOKER [234]3 years ago
8 0

Answer : The number of moles of water will be, 1.235 moles

Solution : Given,

Mass of H_2O_2 = 42 grams

Molar mass of H_2O_2 = 34 g/mole

First we have to calculate the moles of H_2O_2

\text{Moles of }H_2O_2=\frac{\text{Mass of }H_2O_2}{\text{Molar mass of }H_2O_2}=\frac{42g}{34g/mole}=1.235moles

Now we have to calculate the moles of water.

The balanced chemical reaction will be,

2H_2O_2\rightarrow 2H_2O+O_2

From the balanced reaction, we conclude that

As, 2 moles of H_2O_2 decomposes to give 2 moles of water

So, 1.235 moles of H_2O_2 decomposes to give 1.235 moles of water

Therefore, the number of moles of water will be, 1.235 moles

You might be interested in
Balance chemical equation Fe3O4 = Fe + CO2
m_a_m_a [10]

equation Fe3O4=Fe+CO2 is an impossible reaction

5 0
4 years ago
Consider the pka (3.75) of formic acid, h-cooh as a reference. with appropriate examples, show how inductive, dipole, and resona
Luden [163]
Formic acid is the simplest carboxylic acid with a structure of HCOOH and has a pka of 3.75. The pka refers to the acidity of the molecule, which in this example refers to the molecules ability to give up the proton of the O-H. A decrease in the pka value corresponds to an increase in acidity, or an increase in the ability to give up a proton. When an acid gives up a proton, the remaining anionic species (in this case HCOO-) is called the conjugate base, and an increase in the stability of the conjugate base corresponds to an increase in acidity.

The pka of a carboxylic can be affected greatly by the presence of various functional groups within its structure. An example of an inductive effect changing the pka can be shown with trichloroacetic acid, Cl3CCOOH. This molecule has a pka of 0.7. The decrease in pka relative to formic acid is due to the presence of the Cl3C- group, and more specifically the presence of the chlorine atoms. The electronegative chlorine atoms are able to withdraw the electron density away from the oxygen atoms and towards themselves, thus helping to stabilize the negative charge and stabilize the conjugate base. This results in an increase in acidity and decrease in pka.

The same Cl3CCOOH example can be used to explain how dipoles can effect the acidity of carboxylic acids. Compared to standard acetic acid, H3CCOOH with a pka of 4.76, trichloroacetic acid is much more acidic. The difference between these structures is the presence of C-Cl bonds in place of C-H bonds. A C-Cl bond is much more polar than a C-H bond, due the large electronegativity of the chlorine atom. This results in a carbon with a partial positive charge and a chlorine with a partial negative charge. In the conjugate base of the acid, where the molecule has a negative charge localized on the oxygen atoms, the dipole moment of the C-Cl bond is oriented such that the partial positive charge is on the carbon that is adjacent to the oxygen atoms containing the negative charge. Therefore, the electrostatic attraction between the positive end of the C-Cl dipole and the negative charge of the anionic oxygen helps to stabilize the entire species. This level of stabilization is not present in acetic acid where there are C-H bonds instead of C-Cl bonds since the C-H bonds do not have a large dipole moment.

To understand how resonance can affect the pka of a species, we can simply compare the pka of a simple alcohol such as methanol, CH3OH, and formic acid, HCOOH. The pka of methanol is 16, suggesting that is is a very weak acid. Once methanol gives up that proton to become the conjugate base CH3O-, the charge cannot be stabilized in any way and is simply localized on the oxygen atom. However, with a carboxylic acid, the conjugate base, HCOO-, can stabilize the negative charge. The lone pair electrons containing the charge on the oxygen atom are able to migrate to the other oxygen atom of the carboxylic acid. The negative charge can now be shared between the two electronegative oxygen atoms, thus stabilizing the charge and decreasing the pka.
3 0
4 years ago
How many Mg atoms are presented in 3.00 moles of MgCl2
ella [17]

Answer:

1.81 x 10²⁴ atoms

Explanation:

To find the number of atoms in the given number of moles, we need to understand that every substance contains the Avogadro's number of particles.

More appropriately, a mole of any substance will contain the Avogadro's number of particles which is 6.02 x 10²³ atoms

 So;

           If 1 mole of a substance  = 6.02 x 10²³ atoms;

               3 mole of MgCl₂ will contain 3 x 6.02 x 10²³ = 1.81 x 10²⁴ atoms

3 0
3 years ago
A chemistry student must write down in her lab notebook the concentration of a solution of sodium hydroxide. The concentration o
HACTEHA [7]

Answer:

1.099 gmL¯¹ ≈ 1.1 gmL¯¹

Explanation:

From the question given above, the following were obtained:

Mass of empty cylinder = 9.5 g

Mass Cylinder + NaOH = 31.92 g

Volume of solution = 20.4 mL

Concentration of solution =?

Next, we shall determine the mass of sodium hydroxide, NaOH. This can be obtained as as illustrated below:

Mass of empty cylinder = 9.5 g

Mass Cylinder + NaOH = 31.92 g

Mass of NaOH =?

Mass of NaOH = (Mass Cylinder + NaOH) – (Mass of empty cylinder)

Mass of NaOH = 31.92 – 9.5

Mass of NaOH = 22.42 g

Finally, we shall determine concentration of the solution as follow:

Mass of NaOH = 22.42 g

Volume of solution = 20.4 mL

Concentration of solution =?

Concentration = mass /volume

Concentration of solution = 22.42 / 20.4

Concentration of solution = 1.099 gmL¯¹ ≈ 1.1 gmL¯¹

Therefore, the concentration of the solution is 1.1 gmL¯¹

3 0
4 years ago
How does ionization energy change as you
kykrilka [37]

Answer:

How does the energy required to remove an electron from an atom change as you move left to right in Period 4 from potassium through iron? ... A greater nuclear charge pulls the electrons closer to the nucleus, decreasing the atomic radius.

3 0
2 years ago
Other questions:
  • The temperature at which there is no kinetic energy in an object . Is?? ASAP
    7·2 answers
  • The metal rhodium (Rh) has an FCC crystal structure. If the angle of diffraction for the (311) set of planes occurs at 36.12° (f
    8·1 answer
  • Why does your upper body keep moving when you stop running
    15·2 answers
  • having that coloration is selected for since many predators will recognize it and stay away. Therefore the common coloration is
    15·1 answer
  • What volume of water must be added to 10.5 mL of a pH 2.0 solution of HNO3 in order to change the pH to 4.0 g
    15·1 answer
  • Calculate the number of moles in 23.8 grams of Nitrogen, N.
    13·1 answer
  • Convert 6,896 grams to kilogram
    8·1 answer
  • Are sound waves longitudinal or transverse?<br><br> __________________
    12·2 answers
  • Imprints of the shells of ocean clams are often found in the rocks of the Appalachian Mountains. What do these imprint fossils M
    13·1 answer
  • Find δs∘ for the reaction between nitrogen gas and hydrogen gas to form ammonia:12n2(g) 32h2(g)→nh3(g)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!