To calculate electronegativity, start by going online to find an electronegativity table. You can then assess the quality of a bond between 2 atoms by looking up their electronegativities on the table and subtracting the smaller one from the larger one. If the difference is less than 0.5, the bond is nonpolar covalent.
The specific heat of the metal is 2.4733 J/g°C.
Given the following data:
- Initial temperature of water = 25.0°C
- Final temperature of water = 29.0°C
- Temperature of metal = 203.0°C
We know that the specific heat capacity of water is 4.184 J/g°C.
To find the specific heat of the metal (J/g°C):
Heat lost by metal = Heat gained by water.

Mathematically, heat capacity or quantity of heat is given by the formula;

<u>Where:</u>
- Q is the heat capacity or quantity of heat.
- m is the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Substituting the values into the formula, we have:

Specific heat capacity of metal, c = 2.4733 J/g°C
Therefore, the specific heat of the metal is 2.4733 J/g°C.
Read more: brainly.com/question/18691577
Answer:
Minerals can form in three primary ways being precipitation, crystallization from a magma and solid- state transformation by chemical reactions (metamorphism). Mineral Precipitation is when a mineral is formed by crystallization from a solution. Examples include quartz, halite (table salt), calcite, and gypsum.
Metals are malleable - they can be bent and shaped. This is because they consist of layers of atoms. These layers can slide over one another when the metal is bent, hammered or pressed.
Abundant Natural Resources, Advanced Technology, and Highly Skilled Workers are important factors contribute to the United States' high GDP.