1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
2 years ago
6

HELP PLEASE 20 points

Mathematics
1 answer:
Troyanec [42]2 years ago
8 0

Go and download Photomath and it will scan the problem for you and tell you the answer with the graph

You might be interested in
The Booster Club has a goal of raising at least $600. The Club has already raised $50. The Booster Club is sponsoring a pancake
mojhsa [17]

Answer:add it up

Step-by-step explanation:then divide them all

8 0
3 years ago
Solve this equation for x. Round your answer to<br>the nearest hundredth.<br>7 = In(x + 5)<br>​
oksian1 [2.3K]

Answer:

x ≈ 1091.63

Step-by-step explanation:

Using the rule of logarithms

log_{b} x = n ⇔ x = b^{n}

note that ln x is to the base e

Given

ln(x + 5) = 7, then

x + 5 = e^{7} ( subtract 5 from both sides )

x = e^{7} - 5 ≈ 1091.63 ( nearest hundredth )

3 0
2 years ago
The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys
ad-work [718]

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

4 0
2 years ago
Х Y
Montano1993 [528]

Answer:

y = 0.5x + 3

Step-by-step explanation:

7 0
2 years ago
What is the perimeter of the figure?​
rewona [7]

Answer:

Oh! We should start with finding the lngths of the "curvy sides". As you can see there are 2 semi circles which we can combine to make one circle with a diameter of 7. The formula for the circumference of the circle is 2πr which is also equal to the diameter x π. SO the circumeference is 7π which is this case equals 22 since they are telling us to use  π as 22/7. I'm not sure about the rest but I hope this helped a little!!

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • WILL GIVE BRAINLIEST!!!!!
    11·1 answer
  • I need the value of x.<br><br> Show all your work or no points.<br><br> Please explain thoroughly.
    7·1 answer
  • The terminal point determined is in what quadrant?
    12·1 answer
  • Someone help I don't know how to solve this <br> m(x)=−x(x−4)
    7·1 answer
  • Ed’s den is 6 feet longer than it is wide. If the​ den's area is 352 square​ feet, what are the dimensions of the​ room?
    14·1 answer
  • Trapezoid ABCD is graphed in a cordinate plane
    7·1 answer
  • (Will mark brainest) A single six sided die is rolled. Find the probability of rolling an odd number or a number less than 4. Th
    7·2 answers
  • Last one plz help me
    9·1 answer
  • Find the length of the missing side of the triangle.
    9·2 answers
  • Anybody can help me im stuck U_U
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!