False? I'm not sure what you're asking.
The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
The work to stretch a spring from its rest position is
(1/2) (spring constant) (distance of the stretch)²
E = 1/2 k x² .
You said it takes 1700 joules to stretch the spring 3 meters from its rest position, so we can write
1700 joules = 1/2 k (3m)²
1 joule = 1 newton-meter
1700 N-m = 1/2 k (3m)²
Multiply each side by 2: 3400 N-m = k · 9m²
Divide each side by 9m² k = 3400 N-m / 9m²
= (377 and 7/9) newton per meter
The correct answer is The storage and management of radioactive wastes
Explanation:
In general, nuclear reactions (changes in the nucleus of an atom such as fission) release a lot of energy including a lot of heat. Moreover, this heat is used by humans to obtain electricity and other types of energy, which is known as a nuclear power. This type of power is considered positive because it does not emit carbon and it is quite efficient.
However, in most cases, it is a threat to the environment and living beings because storing and managing the wastes of this type of power is difficult and expensive. Indeed, dealing with the wastes of nuclear power requires complex infrastructure, and any accident or leaking leads to serious consequences from the death of those exposed to the wastes to permanent loss of diversity or changes in nearby areas.
Answer:
Total displacement will be 47 meter
Total distance will be 83 meters
Explanation:
We have given that first the student go eastward towards bus stop 20 meters
But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters
So displacement = 20-18 = 2 meters
And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters
Total distance traveled by the student = 20+18+45 = 83 meters