Gravity is the attraction of every body to every other body due to the masses of each body. The larger the mass, the greater the force. It also depends on the distances: the closer the bodies, the greater the force. Gravity is directed toward the center of a body, and the distance is measured from the center.
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.
Op here is another problem exactly like that. Just plug in your variables instead. And remember, time is never negative.
Answer:
6.136 mm
Explanation:
given,
frequency emitted by the bat = 5.59 x 10⁴ Hz
speed of sound = 343 m/s
smallest insect bat can hear will be equal to the wavelength of the sound the bat make.



λ = 6.136 mm
so, the smallest size of insect that bat can hear is equal to 6.136 mm
I would think the answer would be c
Answer:
1.19 m/s²
Explanation:
The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so
f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀ (1)
Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²
Equating (1) and (2) we ave
2(√mg/μ)/f = T²g/4π²
Making g subject of the formula
g = 2π√(2√(m/μ)/f)/T
The period T = 316 s/100 = 3.16 s
Substituting the other values into , we have
g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16
g = 2π√(2 × 35.877/200 Hz)/3.16
g = 2π√(71.753/200 Hz)/3.16
g = 2π√(0.358)/3.16
g = 2π × 0.599/3.16
g = 1.19 m/s²