Answer is: B. C(s) + 2S(s) + 89.4 kJ → CS2(l).
Missing question:
A. C(s) + 2S(s) → CS2(l) + 89.4 kJ.
B. C(s) + 2S(s) + 89.4 kJ → CS2(l).
C. C(s) + 2S(s) + 89.4 kJ → CS2(l) + 89.4 kJ.
D. C(s) + 2S(s) → CS2(l).
Because enthalpy of
the system is greater that zero, this is endothermic reaction (<span>chemical reaction that
absorbs more energy than it releases)</span>, heat is included as a reactant.
Explanation:
here s the answer. Feel free to ask for more chem help
Use the van der Waals equation and the ideal gas equation to calculate the volume of 1.000 mol of neon at a pressure of 500.0 atm and a temperature of 355.0 K.
The Van der Waals equation, also known as the Van der Waals equation of state, is an equation of state used in chemistry and thermodynamics that extends the ideal gas law to take into account the effects of molecular interaction as well as the finite size of the molecules in a gas.
We may build a new equation that better reflects real gas behavior by modifying the ideal gas law to include corrections for interparticle attractions and particle volumes. The van der Waals equation can be used to determine a gas's properties under less-than-ideal circumstances.
To learn more about the van der Waals equation please visit
brainly.com/question/13201335
#SPJ4
A. Amount of sleep, since it depends on how much coffee she drinks
<h3>Answer:</h3>
Krypton has a higher melting point than argon because of its stronger dispersion forces.
<h3>Explanation:</h3>
Dispersion forces also known as London Dispersion forces are found in non polar compounds. These interactions take place in two steps.
Step 1: Instantaneous Dipole:
In non polar compounds the electron density on atom is symmetrical. When these symmetrical atoms approaches second symmetrical atom, a disturbance in electron densities occur due to repulsion between electrons. Due to repulsion the electrons density change there position and for a small period of time and instantaneous dipole is produced on an atom.
Step 2: Induced Dipole:
The dipole produced in step one when approaches another symmetrical atom, the partial positive part (low electron density site) attracts the electron from symmetrical atom and induces polarity in it. In this way the non polar atoms become polar and interacts with each other.
<h3>Factors Effecting Strength of Dispersion Forces:</h3>
i) Size of Atom / Molecule:
Greater the size of an atom greater will be the dispersion forces and vice versa.
ii) Shape of Molecules:
Greater the branching on molecule, weaker will be the dispersion forces and vice versa.
<h3>Conclusion:</h3>
As the size of Krypton is greater than Argon therefore, it will have stronger dispersion forces and will melt at higher temperature than Argon.