Answer:
Q = -811440 J
Explanation:
Given data:
Mass of oil = 2.76 Kg (2.76× 1000 = 2760 g)
Initial temperature = 191 °C
Final temperature = 23°C
Specific heat capacity of oil = 1.75 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 23°C - 191 °C
ΔT = -168°C
Q = 2760 g ×1.75 J/g.°C ×-168°C
Q = -811440 J
Negative sign show heat is released.
Answer:
Determine the location of the lost significant place value by placing a bar over the digit.
Explanation:
When you work with molar mass, you solve for the quantity of ''Moles'' within the substance by converting Mass. The way you can tell the equation is balanced would be by knowing whether the moles were equivalent on both sides or not. Therefore, if they are equal, it is balanced considering you have the same amount of moles on each side of the equation.
Answer:
A
Explanation:
To label an element correctly using a combination of the symbol, mass number and atomic number furnishes some important information about the element.
We can obtain these information from the element provided that correct labeling of the element is presented. Firstly, after writing the symbol of the element, the atomic number is placed as a subscript on the left while the mass number of the atomic mass is placed as a superscript on the same left.
Looking at the question asked, we have the element symbol in the correct position as Ca, with 42 also in the correct position which is the mass number. The third number which is 20 is thus the atomic number of the element.
Boyle's law which plays a major role in the kinetic-theory states that Volume and Pressure are inversely proportional