It depends, for example, it is quite important to know the Kelvin scale (i.e 0 degrees Celsius is 273 K and -273 degrees Celsius is 0 K ) when dealing gases. But I don't know other situations where you would need to know other temperature scales.
Hope this helps and also if you are using Fahrenheit 1 Fahrenheit is -17.22 degrees Celsius
Answer:
4.0 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 12L
Pressure = 5.6 atm
Temperature (T) = 205K
Gas constant (R) = 0.08206 atm.L/Kmol
Number of mole (n) =?
Using the ideal gas equation: PV = nRT, the number of mole of the gas can be obtained as follow
PV = nRT
5.6 x 12 = n x 0.08206 x 205
Divide both side by 0.08206 x 205
n = (5.6 x 12)/(0.08206 x 205)
n = 4.0 moles
Therefore, the number of mole of the gas is 4.0 moles
<h3>
Answer:</h3>
0.125 mol Ca
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
5.00 g Ca
<u>Step 2: Identify Conversions</u>
Molar mass of Ca - 40.08 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.12475 mol Ca ≈ 0.125 mol Ca
If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
<h3>What is Stoichiometry ?</h3>
Stoichiometry helps us use the balanced chemical equation to measure quantitative relationships and it is to calculate the amounts of products and reactants that are given in a reaction.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now we have to write the balanced equation
Mg + 2HNO₃ → Mg(NO₃)₂ + H₂
According to Stoichiometry

= 3.3 g H₂
Thus from the above conclusion we can say that If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
Learn more about the Stoichiometry here: brainly.com/question/16060223
#SPJ1
By using the formula, mass = density x volume, we
calculate mass in grams
20.0 mL CH₃COOH x (1.05 g / mL) = 21.0
g CH₃COOH
To find the moles, molar mass of CH₃COOH = 60.05g/mol<span>
21.0 g </span>CH₃COOH x (1 mole CH₃COOH / 60.05 g CH₃COOH)
= 0.350 moles CH₃COOH
To find molarity,<span>
[</span>CH₃COOH] = moles CH₃COOH / L of solution = 0.350 /
1.40 = 0.250 M CH₃COOH<span>
When </span>CH₃COOH is dissolved in water, it produces
small and equal amounts of H₃O⁺+ and C₂H₃O₂⁻.
<span>
Molarity , </span>CH₃COOH<span> + H</span>₂O <==> H₃O⁺ + C₂H₃O₂⁻
<span>
<span>Initial 0.250 0 0 </span>
Change -x x x
Equilibrium 0.250-x x x
K</span>ₐ = [H₃O⁺][C₂H₃O₂⁻] / [HC₂H₃O₂] = (x)(x) /
(0.250-x) = 1.8 x 10⁻⁵
<span>Since K</span>ₐ is relatively small, we can neglect the -x
term after 0.250 to simplify
<span>x</span>² / 0.250 = 1.8 x 10⁻⁵
x² = 4.5 x 10⁻⁶
<span>
x = 2.1 x 10</span>⁻³<span> = [H</span>₃O⁺]
pH = -log [H₃O⁺] = -log (2.1 x 10⁻³) = 2.68