The provided question has marked options incorrectely the correct order as follows:
A) Expose putative DNA repair mutant plants to ionizing radiation L and see if they survive less well than wild-type plants.
B) Measure the amount of post-translational processing that occurs in the putative DNA repair mutant plants.
C) Measure the somatic mutation rates for the putative DNA repair mutant plants.
D) Expose the putative DNA repair mutant plants to a deaminating agent and select those that have a decreased mutation rate.
E) Measure the germline spontaneous and induced mutation rates for the putative DNA repair mutant plants.
Answer:
The correct answer is: A), C) and E)
Explanation:
The breeder wants to isolate the mutants in tomatoes that are defective in DNA repair, to identify such plants breeder should follow these methods as they will allow best to identifying the defective tomatoes-
Measure the somatic mutation rates for the putative DNA repair mutant plants.
Measure the germline spontaneous and induced mutation rates for the putative DNA repair mutant plants.
Expose putative DNA repair mutant plants to ionizing radiation L and see if they survive less well than wild-type plants. This will allow the breeder to see and analyze the ability of DNA repair in tomatoes
1.Biological species concept
2.Cladistic species concept
3.Cohesion species concept
4.Competition species concept
5.Ecological species concept
6.Evolutionary species concept
7.Isolation species concept
8.Phenetic species concept
9.Phylogenetic species concept
10.Recognition species concept
11.Typological species concept
For descriptions just look them up :)
Answer:
hotter temperatures, increases storms, increases drought
The four levels of protein structure are distinguished from one another by the degree of complexity in the polypeptide chain. A single protein molecule may contain one or more of the protein structure types: primary, secondary, tertiary, and quaternary structure. 1. Primary Structure: describes the unique order in which amino acids are linked together to form a protein.
2. Secondary Structure: refers to the coiling or folding of a polypeptide chain that gives the protein its 3-D shape. There are two types of secondary structures observed in proteins. One type is the alpha (α) helix structure. This structure resembles a coiled spring and is secured by hydrogen bonding in the polypeptide chain. The second type of secondary structure in proteins is the beta (β) pleated sheet. This structure appears to be folded or pleated and is held together by hydrogen bonding between polypeptide units of the folded chain that lie adjacent to one another
3. Tertiary Structure: refers to the comprehensive 3-D structure of the polypeptide chain of a protein.
4. Quaternary Structure: is the structure of a protein macromolecule formed by interactions between multiple polypeptide chains. Each polypeptide chain is referred to as a subunit. Proteins with quaternary structure may consist of more than one of the same type of protein subunit.