Answer:
1 pear = $0.75; 1 orange = $0.65
Step-by-step explanation:
(1) 3P + 4O = 4.85
(2) 3P + 10O = 8.75 Eqn (2) - Eqn (1)
3P + 10O – 3P – 4O = 8.75 – 4.85 Combine like terms
6O = 3.90 Divide each side by 6
O = $0.65 Substitute into Eqn (1)
3P + 4×0.65 = 4.85
3P + 2.60 = 4.85 Subtract 2.60 from each side
3P = 2.25 Divide each side by 3
P = $0.75
Oranges cost $0.65 each and pears are $0.75 each
It would be 9 1/3 divided by 7/1 or 28/3 * 1/7
It would give you 28/21 which would simplify to 4/3 and still leave you with an improper fraction
Answer:
144°
Step-by-step explanation:
First, find the area of the circle, with the formula A =
r²
Plug in 10 as the radius, and solve
A =
r²
A =
(10²)
A = 100
Using this, create a proportion that relates the area of the sector to the degree measure of the arc.
Let x represent the degree measure of the arc of the sector:
= 
Cross multiply and solve for x:
100
x = 14400
x = 144
So, the degree measure of the sector arc is 144°
We know that the sum of the inner angles of any triangle is 180º
72º + (7x + 3)º + (3x + 5)º = 180º
72º + 7xº + 3º + 3xº + 5º = 180
7xº + 3xº = 180º - 72º - 3º - 5º
10xº = 100º


The sum of the external angle (9y + 1)º with inner angle (3x + 5) = 180 °, <span>Replace the measure of "x" found:
</span>
(9y + 1)º + (3x + 5)º = 180º
9yº + 1º + 3xº + 5º = 180º
9yº + 1º + 3.(10)º + 5º = 180º
9yº + 1º + 30º + 5º = 180º
9yº = 180º - 1º - 30º - 5º
9yº = 144º


Answer:
<span>
The measures of "x" and "y" are respectively: 10º and 16º</span>