1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
3 years ago
8

Paula, a college student, earned $3,600 one summer. During the following semester, she spent $2,500 for tuition, $650 for rent,

and $430 for food. The rest went for miscellaneous expenses. What fractions show the amounts Paula spent on tuition, rent, food, and miscellaneous expenses?
Mathematics
2 answers:
ioda3 years ago
6 0
TO get this answer, we divide the spent money by the earned.
2500/3600=0.69
The answer is 69%
Neporo4naja [7]3 years ago
3 0

Answer:

Step-by-step explanation:

Paula, a college student, earned one summer = $3,600

We have to show the amount in fraction that Paula spent during the following semester,

she spent for tuition = $2,500 = \frac{2500}{3600} × 100

=0.6944 × 100

=  69.44% or  \frac{69.44}{100}

She spent for rent = $650 =  \frac{650}{3600} × 100

= 0.1806 × 100

= 18.06% or  \frac{18.06}{100}

Paula spent for food = $430 =  \frac{430}{3600} × 100

=0.1194 × 100

= 11.94% or  \frac{11.94}{100}

She Spent in tuition, rent and food = 2,500 + 650 + 430 = $3580

Now she spent in miscellaneous expenses = 3600 - 3580 = $20.00  \frac{20}{3600} × 100

= 0.056 × 100

= 0.56% or  \frac{0.56}{100}

You might be interested in
6th grade math help me. :D.....
strojnjashka [21]
Question 1:
4x+28

question 2:
18x-27
4 0
3 years ago
Read 2 more answers
X^2+2y=19<br> X^2+y^2=34
Katen [24]

Answer:

x=3

y=5

Step-by-step explanation:

3×3=9

5×5=25

9+25=34

[3^2+5^2=34]

3^2=9

2×5=10

9+10=19

[3^2+2×5=19]

5 0
3 years ago
The area of a circle is 153.86 square meters. What is the diameter of the circle? Use 3.14 for π.
ryzh [129]

Answer:

Option (2). 14 m

Step-by-step explanation:

Formula to get the area of a circle 'A' = \pi r^{2}

where r = radius of the circle

Given in the question,

Area of the circle = 153.86 square meters

By putting the values in the formula,

153.86 = πr²

r = \sqrt{\frac{153.86}{\pi } }

r = \sqrt{49}

r = 7 meters

Diameter of circle = 2 × (radius of the circle)

                              = 2 × 7

                              = 14 meters

Therefore, diameter of the circle is 14 meters.

Option (2) is the answer.

4 0
2 years ago
Thomas runs 34 of a mileevery day for 5 days. Howfar has he run total?
STALIN [3.7K]

Guven:

Miles per day = 34 miles

Number of days = 5 days

To find the total distance(miles), we have:

Total distance = distance covered per day x Number per days

= 34 x 5 = 170 miles

Therefore, the total distance he has covered is 170 miles

ANSWER:

170 miles

4 0
1 year ago
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
2 years ago
Other questions:
  • The table below shows the values of y for different values of x:
    5·1 answer
  • How to find the inverse of h(x) = 3/ -x - 2 List steps.
    6·1 answer
  • In a billiards game, Pete hits a ball that is 20in. from a wall. The ball travels 34 in. until it hits the wall and bounces to a
    10·1 answer
  • hannah travels 6 times as many minutes as raoul does together they travel 63 minutes? how many minutes does hannah travel
    7·1 answer
  • A salesperson is hired with a commission structure that allows for a 5% commission payment. This can be modeled by the function
    12·1 answer
  • Which two-dimensional shape can be rotated to create this solid object?
    15·1 answer
  • Please answer this question now
    15·1 answer
  • The ratio of AC to BC is ________. 3/4 2/3 4/3 3/2
    6·2 answers
  • The side lengths of a triangle are 5, 3, and 4. Is this a right triangle?
    7·2 answers
  • Help me pls need help​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!