1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
3 years ago
11

Will markk the brainliest

Mathematics
1 answer:
ivolga24 [154]3 years ago
3 0

Answer:

  1. the range of f^-1(x) is {10, 20, 30}.

  2. the graph of f^-1(x) will include the point (0, 3)

  3. n = 8

Step-by-step explanation:

1. The domain of a function is the range of its inverse, and vice versa. The range of f^-1(x) is {10, 20, 30}.

__

2. See above. The domain and range are swapped between a function and its inverse. That means function point (3, 0) will correspond to inverse function point (0, 3).

__

3. The n-th term of an arithmetic sequence is given by ...

  an = a1 +d(n -1)

You are given a1 = 2, a12 = 211, so ...

  211 = 2 + d(12 -1)

  209/11 = d = 19 . . . . . solve the above equation for the common difference

Now, we can use the same equation to find n for an = 135.

  135 = 2 + 19(n -1)

  133/19 = n -1 . . . . . . . subtract 2, divide by 19

  7 +1 = n = 8 . . . . . . . . add 1

135 is the 8th term of the sequence.

You might be interested in
Select all that apply <br> thαnkѕ pєrѕσn
vodka [1.7K]
Im gonna guess and say the right ones might be
A = AB or A'B'
B = CB or C'B'
D =  CA or C'A'
Cus all equal the same side
H0P3 It H2LPS :)
or something
 
8 0
2 years ago
Determine whether quantities vary directly or inversely and find the constant of variation. A teacher grades 25 students essays
Lesechka [4]
IDK the constant and quantities...
First, find how many hours it takes for him to grade 1 essay, 0.16. Then multiply that by 35 to get 5.6.
I hope this is right -_-'
8 0
2 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
Two marathon runners run the full distance of the marathon, approximately 26 miles, in 4 hours.
xxTIMURxx [149]

Answer:

6.5 miles in 1 hour and they will run 75% of the full distance in 1 hour.

Step-by-step explanation:

The distance covered by two marathon runners = 26 miles

They takes 4 hours

We need to find how many miles did they run in 1 hour

In 4 hour, the distance covered is 26 miles

To find distance covered in 1 hour, divide 26 by 4 such that.

d=\dfrac{26}{4}\\\\d=6.5\ \text{miles/hour}

So, they will cover 6.5 miles in 1 hour.

For percentage,

\%=\dfrac{26-6.5}{26}\times 100\\\\=75\%

So, they will run 75% of the full distance in 1 hour.

8 0
3 years ago
A bird of species A, when diving, can travel 6 times as fast as bird of species B top speed. if the total speeds for these to bi
MA_775_DIABLO [31]
X=266/7
x=38mph b
6x=228mph a
7 0
3 years ago
Other questions:
  • Suppose a + b = 0. Which one of these expressions equals a-b?
    14·2 answers
  • A driver is going to drive 100 miles. if they drive the first 50 miles at 50 miles per hour, how fast do they have to drive the
    11·1 answer
  • What property is 77(-2)=(-2)77
    12·1 answer
  • (please answer ASAP, will give brainliest)
    7·2 answers
  • Which triangle has all three angle measuring less than 90°
    13·1 answer
  • The sum of two numbers is -33 and their difference is -1. Find the numbers. *
    6·1 answer
  • Find the inequality represented by the graph.
    10·2 answers
  • What is the surface area of the triangular prism?
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csf%20Evaluate%5Cint%20log%20%5C%3A%20x%20%5C%3A%20dx" id="TexFormula1" title=" \sf Evalu
    14·2 answers
  • A path in the park is 15 kilometers in. a trash bin is placed every 1/3 kilometers how many trash cans are along the path ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!