Answer:
1.) 0.1 M
2.) 0.2 M
3.) 1 M
4.) Solution #3 is the most concentrated because it has the highest molarity. This solution has the largest solute to solvent ratio. The more solvent there is, the lower the concentration and molarity.
Explanation:
To find the molarity, you need to (1) convert grams NaOH to moles (via molar mass from periodic table) and then (2) calculate the molarity (via the molarity equation). All of the answers should have 1 sig fig to match the given values.
Molar Mass (NaOH): 22.99 g/mol + 16.00 g/mol + 1.008 g/mol
Molar Mass (NaOH): 39.998 g/mol
4 grams NaOH 1 mole
---------------------- x ------------------ = 0.1 moles NaOH
39.998 g
1.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (1 L)
Molarity = 0.1 M
2.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (0.5 L)
Molarity = 0.2 M
3.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (0.1 L)
Molarity = 1 M
The number of moles that are contained in the given mass of propane ( is 1.7143 moles.
<u>Given the following data:</u>
- Mass of propane = 75.6 grams.
<u>Scientific data:</u>
- The molar mass of propane = 44.1 g/mol.
To calculate the number of moles that are contained in the given mass of propane ():
<h3>How to calculate the moles of a compound.</h3>
In this exercise, you're required to determine the number of moles of propane that are contained in the given sample:
Mathematically, the number of moles contained in a chemical compound is given by this formula:
Substituting the given parameters into the formula, we have;
Number of moles = 1.7143 moles.
Read more on number of moles here: brainly.com/question/3173452
The lighted half of the moon faces away from the earth during the New Moon phase