Answer:
<u>One lone-Pair is present in Ammonia</u>
<u></u>
Explanation:
The number of valence electron in N = 5
The number of Valence electron in H = 1
The formula of ammonia = NH3
Total valence electron in ammonia molecule = 5 +3(1) = 5+3 = 8
The lewis structure suggest that :
Nitrogen completes its octet by sharing the electron pair with 3 hydrogen atoms.
3 electron of Nitrogen are involved in sharing with Hydrogen
So,<u><em> remaining two electron are left non-bonded</em></u> . Hence they exist as lone- pair
So, there is only 1 lone pair in the ammonia molecule .
The shape of NH3 is bent according to VSEPR theory . This is so because the presence of 1 lone pair causes more repulsion and occupy more space.
Thus the lone pair is changing the shape of the ammonia molecule . It also increase the dipole moment of the molecule , which gives polarity to it.
Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g
Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.