0.424209104545485 is the answer my friend lol or at least what I got
<span>Charles' law says "at a constant pressure, the volume of a fixed amount of gas is directly proportional to its absolute temperature".
V </span>α T
Where V is the volume and T is the temperature in Kelvin of the gas. We can use this for two situations as,
V₁/T₁ = V₂/T₂
V₁ = 2.00 L
T₁ = 40.0 ⁰C = 313 K
V₂ = ?
T₂ = 30.0 ⁰C = 303 K
By applying the formula,
2.00 L / 313 K = V₂ / 303 K
V₂ = (2.00 L / 313 K) x 303 K
V₂ = 1.94 L
Hence, the volume of the balloon at 30.0 ⁰C is 1.94 L
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Answer:
Partial pressure SO₂ → 0.440 atm
Explanation:
We apply the mole fraction concept to solve this:
Moles of gas / Total moles = Partial pressure of the gas / Total pressure
Total moles = 0.3 moles of CO₂ + 0.2706 moles of SO₂ + 0.35 moles H₂O
Total moles = 0.9206 moles
Mole fraction SO₂ = 0.2706 moles / 0.9206 moles → 0.29
Now, we can know the partial pressure:
0.29 = Partial pressure SO₂ / Total pressure
0.29 = Partial pressure SO₂ / 1.5 atm
0.29 . 1.5atm = Partial pressure SO₂ → 0.440 atm