Answer:
Analogous structures
Explanation:
Analogous structures are similar structures that evolved independently in two living organisms to serve the same purpose.
Analogous structures are examples of convergent evolution, where two organisms separately have to solve the same evolutionary problem – such as staying hidden, flying, swimming, or conserving water – in similar ways. The result is similar body structures that developed independently.
In the case of analogous structures, the structures are not the same, and were not inherited from the same ancestor. But they look similar and serve a similar purpose.
For example, the wings of an insect, bird, and bat would all be analogous structures: they all evolved to allow flight, but they did not evolve at the same time, since insects, birds, and mammals all evolved the ability to fly at different times.
Actually yes. You can find organisms, like bacteria, living in deep oceans, which do not have access to sunlight. There are cases in which they use thermal resources in order to produce energy. They are called <span>chemoautotrophs. You can find them around deep ocean "smokers".</span><span />
i am not very good at science but i still want to help so i search it up for you
(i searched it up on Bing)
The branch of biology that deals with the relations of organisms to one another and to their physical surroundings.
hope this helps
Answer:
C. Kinesin hydrolyzes ATP.
Explanation:
The central force-generating element that the two types of motor proteins (Kinesin and Myosin) have in common includes the site of ATP binding and the machinery necessary to translate ATP hydrolysis into an allosteric conformational change. Kinesin must use the energy derived from ATP binding and hydrolysis to force a large movement in part of the protein molecule. When kinesin forms a rigor-like tight association with the head location of the microtubule, the ATP is bound to the kinesin, and it is hydrolysis of ATP that promotes release of the motor from its track. Thus, myosins can typically drive filament sliding much more rapidly than kinesins, even though they hydrolyze ATP at comparable rates and take molecular steps of comparable length.