Answer:
1 - If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
2 - Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
Past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.
Answer:
c. ![\frac{1}{12n} = {[12n]}^{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B12n%7D%20%3D%20%7B%5B12n%5D%7D%5E%7B-1%7D)
Step-by-step explanation:
![[\frac{1}{4}][\frac{2}{5}][\frac{1}{2}][\frac{4}{7}][\frac{5}{8}][\frac{2}{3}][\frac{7}{n}] = \frac{560}{6720n} = [12n]^{-1} = \frac{1}{12n}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B4%7D%5D%5B%5Cfrac%7B2%7D%7B5%7D%5D%5B%5Cfrac%7B1%7D%7B2%7D%5D%5B%5Cfrac%7B4%7D%7B7%7D%5D%5B%5Cfrac%7B5%7D%7B8%7D%5D%5B%5Cfrac%7B2%7D%7B3%7D%5D%5B%5Cfrac%7B7%7D%7Bn%7D%5D%20%3D%20%5Cfrac%7B560%7D%7B6720n%7D%20%3D%20%5B12n%5D%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B12n%7D)

* To make this simpler, reduce these two fractions in lowest terms.
I am joyous to assist you anytime.