Answer:
K'= (-1,-1)
J'= (-1,-5)
L'= (0,-3)
Step-by-step explanation:
What you do here is, input the (x,y) coordinates into the translation.
For example, the original point K is (-3,5). Insert this into the translation.
(-3,5) → (-3+2, 5-8) = (-1,-3)
Repeat this for the next coordinates of L and J.
J= (-3,3)
(-3,3) → (-3+2, 3-8) = (-1,-5)
L= (-2, 5)
(-2, 5) → (-2+2, 5-8) = (0,-3)
He has 2/3 left to complete.
He did 5 out of 15 which is 5/15 or 1/3. Therefore he has 1-1/3 or 2/3 left.
Firstly, we will select three corner points
A=(2,3)
B=(6,8)
C=(7,4)
we are given
the transformation with the rule (x, y)→(x, −y)
y--->-y
so, it is reflected about x-axis
so, we will multiply y-value by -1
we get new points as
A=(2,-3)
B=(6,-8)
C=(7,-4)
now, we can locate these points and draw graph
we get
(-3,2) (0,0) i think. it’s been a whole
The correct question is:
Suppose x = c1e^(-t) + c2e^(3t) a solution to x''- 2x - 3x = 0 by substituting it into the differential equation. (Enter the terms in the order given. Enter c1 as c1 and c2 as c2.)
Answer:
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
Step-by-step explanation:
We need to verify that
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
We differentiate
x = c1e^(-t) + c2e^(3t)
twice in succession, and substitute the values of x, x', and x'' into the differential equation
x''- 2x' - 3x = 0
and see if it is satisfied.
Let us do that.
x = c1e^(-t) + c2e^(3t)
x' = -c1e^(-t) + 3c2e^(3t)
x'' = c1e^(-t) + 9c2e^(3t)
Now,
x''- 2x' - 3x = [c1e^(-t) + 9c2e^(3t)] - 2[-c1e^(-t) + 3c2e^(3t)] - 3[c1e^(-t) + c2e^(3t)]
= (1 + 2 - 3)c1e^(-t) + (9 - 6 - 3)c2e^(3t)
= 0
Therefore, the differential equation is satisfied, and hence, x is a solution.