Answer:
Wc = 7.84 weight of crown
Ww = 7.84 - 6.86 = .98 weight of water displaced
Density = 7.84 / .98 = 8 crown is 8 X that of water
Since gold has a density of 19.3 that of water the crown is certainly not 100 percent (if any) gold
Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.
where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.
Let the orbital period of the earth be and its mean distance of from the sun be .
Also let the orbital period of the planet be and its mean distance from the sun be .
Equation (2) therefore implies the following;
We make the period of the planet the subject of formula as follows;
But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore
Substituting equation (5) into (4), we obtain the following;
cancels out and we are left with the following;
Recall that the orbital period of the earth is about 365.25 days, hence;
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers.
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>