Answer: Charles's law
Explanation:
Charles's law is one of the gas laws, and it explains the effect of temperature changes on the volume of a given mass of gas at a constant pressure. Usually, the volume of a gas decreases as the temperature decreases and increases as the temperature also increases.
Mathematically, Charles's law can be expressed as:
V ∝ T
V = kT or (V/T) = k
where v is volume, T is temperature in Kelvin, and a k is a constant.
If it's Kepler's law of equal areas you're talking about,
then the first of the four statements is true.
Answer:
When the apple falls from the tree, it has some gravitational potential energy due to its height. Now, When it starts falling, the Gravitation Potential energy will starts converting into the Kinetic Energy. When the apple is about to strikes the ground, the Gravitational Potential energy have been converted into the Kinetic Energy.
Explanation:
Answer:
The acceleration of the centre of mass of spool A is equal to the magnitude of the acceleration of the centre of mass of spool B.
Explanation:
From the image attached, the description from the complete question shows that the two spools are of equal masses (same weight due to same acceleration due to gravity), have the same inextensible wire with negligible mass is attached to both of them over a frictionless pulley; meaning that the tension in the wire is the same on both ends.
And for the acceleration of both spools, we mention the net force.
The net force acting on a body accelerates the body in the same direction as that in which the resultant is applied.
For this system, the net force on either spool is exactly the same in magnitude because the net force is a difference between the only two forces acting on the spools; the tension in the wire and their similar respective weights.
With the net force and mass, for each spool equal, from
ΣF = ma, we get that a = ΣF/m
Meaning that the acceleration of the identical spools is equal also.
Hope this Helps!
Answer:
The more hydrogen bonds a molecule can make, the higher the surface tension.
Explanation:
Hydrogen bonds provide higher surface tension to a liquid
More hydrogen molecules - stronger cohesive forces